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An essential element of 10 PRINT is randomness; the program could not 

produce its mesmerizing visual effect without it. This randomness comes by 

way of RND, a standard function in BASIC. RND has been part of the BASIC 

lexicon since the language’s early days at Dartmouth. What the function 

does is easily characterized, yet behind those three letters lie decades, 

even centuries, of a history bound up in mathematics, art, and less ab-

stract realms of culture. This chapter explores randomness in computing 

and beyond. The role of randomness in games, literature, and the arts is 

considered, as are the origins of random number generation in modern 

mathematics, engineering, and computer science. Also discussed is the 

significance of “pseudorandomness”—the production of random-like val-

ues that may appear at first to be some sad, failed attempt at randomness, 

but which is useful and even desirable in many cases. The chapter argues 

that the maze pattern of 10 PRINT is entwined with a complex history of 

aesthetic and utilitarian coin flips and other calculations of chance.

 Since a random occurrence is “hap,” the root of happy, it might 

seem that “random” would have a happy etymology. But this is not so. 

In centuries past, before the philosophers and mathematicians in the Age 

of Enlightenment sought to rationalize chance, randomness was a night-

mare. Likely ancestors of the word “random” are found in Anglo-Norman, 

Old French, and Middle French and include randoun, raundun, raundoun, 

randon, randun, and rendon—words signifying speed, impulsiveness, and 

violence. These early forms are found beginning around the twelfth cen-

tury and probably derive from randir, to run fast or gallop (“random, n., 

adv., and adj.” 2011). Bumper stickers implore drivers to “practice random 

acts of kindness,” but only because people in our culture fear random acts 

of violence so much that this phrase has become ingrained and can be 

punned upon—and at a deeper level, perhaps, because the speed and 

violence of other vehicles are to be feared. While in recent days it might be 

harmless to encounter “a random” sitting in the computer lab exploring a 

system at random, a “random encounter” centuries ago was more likely to 

resemble a random encounter in Dungeons & Dragons: a figure hurtling on 

horseback through a village, delivering death and destruction.

 Only recently have the meanings of the word “random” coalesced 

around science and statistics. The history of this word is strewn with obso-

lete meanings: the degree of elevation of a gun that maximizes its range; 

the direction of a metallic vein in a mine; the sloping board on the top 
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of a compositor’s frame where newly arranged pages are stored before 

printing. These particular randoms kill opponents, create wealth, or help 

assemble texts. The RND command in 10 PRINT selects one of two graphi-

cal characters—a kind of textual composition that recalls the last of these 

meanings of random. 10 PRINT’s random is a flip or flop, a symbol like a 

slash forward or backward (but fortunately less fearsome than the horse-

man’s random slash). The program splays each random figure across the 

screen using the PRINT command, another echo of the printing press and 

a legacy of the early days of BASIC, when PRINT literally meant putting ink 

on paper. Although RND on the Commodore 64 may seem remote from 

these early meanings of “random,” there are, beneath the surface, connec-

tions to speed, violence, devastation, and even printing.

GAMES OF CHANCE

Life itself is full of randomness and the inexplicable, and it is no small won-

der that children and adults alike consciously incorporate chance into their 

daily lives, as if to tame it. Games of chance are one of the four fundamental 

categories of games that all humans play, according to the French cultural 

historian Roger Caillois. Whereas agon are competitive games dependent 

upon skill, games of mimicry are imaginative, and ilinx are games causing 

disorder and loss of control, the alea are games of chance. Craps, rou-

lette, the lottery—these are some of the games in this category, ones with 

unpredictable outcomes. Taken from the Latin name for dice games, alea 

“negates work, patience, experience, and qualifications” (Caillois 2003, 17) 

so that everything depends on luck. In Latin, the āleātor is a gambler; in 

French, aléatoire is the mathematical term for random. 

The Appeal of the Random

In his Arcades Project on nineteenth-century Paris, Walter Benjamin de-

votes an entire section to dice games and gambling, a curious assemblage 

of notes and excerpts from sources ranging from Casanova to Friedrich 

Engels. “Gambling,” Anatole France is quoted as saying, “is a hand-to-

hand encounter with Fate” (Benjamin 1999, 498 [O4A]). Every spin of the 

roulette wheel is an opportunity to show that fate smiles upon the player. 
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Fortunes rise and fall in the blink of an eye, the roll of the die, or the cut of 

the cards. Every gambler knows this, accepts it, and even relishes it.

 The allure of gambling—and more generally, the allure of chance in 

all games—rests on uncertainty. Uncertainty is so compelling that even oth-

erwise skill-based games usually incorporate formal elements of chance, 

such as the coin toss at the beginning of a football game. As Katie Salen 

and Eric Zimmerman put it, uncertainty “is a key component of meaningful 

play” (2004, 174). Once the outcome of a game is known, the game be-

comes meaningless. Incorporating chance into the game helps delay the 

moment when the outcome will become obvious.

 Consider the case of George Hurstwood in Theodore Dreiser’s Sister 

Carrie, first published in 1900. Driven by “visions of a big stake,” Hurst-

wood visits a poker room:

 Hurstwood watched awhile, and then, seeing an interesting game, 

 joined in. As before, it went easy for awhile, he winning a few times 

 and cheering up, losing a few pots and growing more interested and 

 determined on that account. At last the fascinating game took a 

 strong hold on him. He enjoyed its risks and ventured on a trifling 

 hand to bluff the company and secure a fair stake. (Dreiser 1981, 374)

What is intriguing about Dreiser’s account is that it is only when Hurst-

wood’s good fortune wavers that his interest in the game grows and he 

begins to enjoy it. Losing a few hands makes a winning streak that much 

more thrilling. “A series of lucky rolls gives me more pleasure than a man 

who does not gamble can have over a period of several years,” Edouard 

Gourdon avers in one sexually charged extract in the The Arcades Proj-

ect. “These joys,” he continues, “vivid and scorching as lightning, are too 

rapid-fire to become distasteful, and too diverse to become boring. I live a 

hundred lives in one” (Benjamin 1999, 498 [O4A]).

 Unlike the early, purely malevolent associations of randomness de-

scribed in the beginning of this chapter, randomness here involves the mas-

ochistic interplay between pleasure and pain. There is also a monumental 

compression of time: a hundred lives in one. Anatole France calls gambling 

“the art of producing in a second the changes that Destiny ordinarily ef-

fects only in the course of many hours or even many years” (Benjamin 1999, 

498 [O4A]). Benjamin himself declares that “the greater the component of 
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chance in a game, the more speedily it elapses” (512 [O12A,2]). Waiting, 

boredom, monotony—these frustrations disappear as “time spills from his 

[the gambler’s] every pore” (107 [D3,4]).

Forms of Randomness

Perhaps Benjamin describes games of chance with a bit more whimsy 

than is useful for critical discussion of the role of randomness in culture. 

Although words like randomness, chance, and uncertainty may be casually 

interchanged, not all forms of chance are actually the same. To highlight 

distinctions between various forms of chance, consider the anthropologist 

Thomas Malaby’s account of gambling in a small Greek city on the island of 

Crete—an appropriate site of exploration, given alea’s Greek etymology. 

Malaby’s goal is to use gambling as a “lens through which to explore how 

social actors confront uncertainty in . . . key areas of their lives” (2003, 7). 

How do people account for the unaccountable? How do we deal with the 

unpredictable? And what are the sources of indeterminacy in our lives?

 Malaby presents a useful framework for understanding indeterminacy 

based on four categories. The first category is formal indeterminacy, or 

what is commonly referred to as chance. This is any form of random al-

lotment, which often can be understood and modeled through statistical 

methods. Malaby argues that the ascendancy of statistical thinking in the 

social sciences has so skewed our conception of indeterminacy in gam-

bling (in particular) and in our lives (in general) that formal indeterminacy 

has become a stand-in for other types of indeterminacies. The second cat-

egory is social indeterminacy, the impossibility of knowing or understand-

ing someone else’s point of view or intentions. A bluff is a type of social in-

determinacy. The third category is performative indeterminacy, that is, the 

unreliability of one’s own or of another’s actions, say a fumble in football 

game or misreading the information in plain view on a chessboard. Finally, 

the fourth category Malaby describes, cosmological indeterminacy, refers 

to skepticism about the fairness and legitimacy of the rules of the game in 

the first place at a local, institutional, or cosmological level. Suspicion that a 

game is rigged, for example, is concern about cosmological indeterminacy 

(Malaby 2003, 15 –17).

 Privileging of the stochastic principles of formal determinacy means 

that players, scholars, and even programmers dismiss social and performa-
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tive indeterminacies altogether. In the case of 10 PRINT, thinking about 

social indeterminacy can reveal several new layers of randomness, such 

as the idiosyncratic line numbers in the 1982 and 1984 versions of the 

program. Likewise, understanding performative indeterminacies may ac-

count for the textual variants of the program, for example, the version that 

appeared in the online publication Commodore Free that will not actually 

execute as printed (Lord Ronin 2008).

 Cosmological indeterminacy is perhaps the most difficult form of in-

determinacy to apply to 10 PRINT. The rise of the scientific method can 

be seen as one enduring struggle to impose a more rational view upon the 

world and to abolish cosmological indeterminacy. From Aristotle to Gali-

leo to Newton, classical mechanics defined the universe as an organized 

system without random actions. Einstein declared that “God does not play 

dice with the universe.” Yet, as a closer examination of randomness on 

the Commodore 64 will reveal, there is evidence that randomness on this 

computer—and indeed, on any computer—is fundamentally “rigged” in 

a way that echoes Malaby’s idea of cosmological indeterminacy. Random-

ness and chance operations are so necessary to daily life, well beyond the 

realm of games, that randomness itself is framed as fixed, repeatable, and 

knowable.

RANDOMNESS BEFORE COMPUTING

Just as the different categories of indeterminacy in games are often grouped 

together and called “chance,” so too in the visual arts, music, and other 

aesthetic practices is the word “chance” used instead of “randomness.” In 

his chapbook Chance Imagery, the conceptual artist George Brecht (1966) 

describes two distinct types of chance operations by which an artist might 

create a work: “one where the origin of images is unknown because it lies in 

deeper-than-conscious levels of the mind” and a second “where images de-

rive from mechanical processes not under the artist’s control.” The first defi-

nition describes the work of the Surrealists and Abstract Expressionists, who 

sought to allow subconscious processes to dictate their work. The second 

definition is reminiscent of Dada and closer to the typical concept of ran-

domness in computing; it describes the mechanical operations of the artists 

most directly connected to 10 PRINT. These two senses are worth noting 



RANDOMNESS {125}

because it is difficult to pull on one of the two senses of “chance” without 

the other one—the unconscious, in this case—at least feeling a tug.

 The tension between these two chance operations is captured in Wil-

liam Burroughs’s story about a Surrealist rally in the 1920s. Tristan Tzara 

suggested writing a poem “on the spot by pulling words out of a hat,” 

and as Burroughs tells it, “a riot ensued” and “wrecked the theater.” In his 

version of events, André Breton, the leading Surrealist, expelled Tzara from 

the group, his purely mechanistic chance operation being an affront to the 

power and vagaries of the Freudian unconscious (Burroughs 2003). Bur-

roughs is most certainly conflating several events, and the break between 

Surrealism and Dada had as much to do with a personality clash between 

Breton and Tzara as with their approaches to art (Brandon 1999, 127). Bur-

roughs himself clearly preferred the anarchic mode of Tzara and famous-

ly described a similarly unpredictable mode of composition, the cut-up 

method, also proposed by Tzara in his 1920 “To Make a Dadaist Poem.” 

Burroughs explains that “one way to do it” is to cut a page in four quarters 

and then rearrange the sections: “you will find that it says something and 

something quite definite” (90). Tzara suggests pulling words blindly from a 

bag. The generative possibilities of this cut-up technique resemble the col-

lage in art and the montage in film, and have become far more mainstream 

today than Tzara might have imagined in 1920. For instance, Thom Yorke, 

the lead singer for the band Radiohead, wrote the lyrics to “Kid A” in 1999 

by pulling fragments of text out of a top hat.

Chance Operations

Though Yorke employed a type of cut-up method to address severe writer’s 

block, artistic experimentation with randomness in the early part of the 

twentieth century can be seen as a response to the sterile functionality of 

rationality and empiricism wrought by the Industrial Age and as a deliber-

ate reaction against World War I. Consider Marcel Duchamp’s Three Stan-

dard Stoppages (1913–1914). According to his description of the piece, 

Duchamp dropped three meter-long pieces of string from the height of 

one meter and let gravity and chance dictate the paths of the twisting 

string downward. Then he adhered the twisted string onto canvas, the 

shape and length of which he preserved in 1918 in wooden cutouts, creat-

ing three new “stoppages” that parodied the supposed rationality of the 
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meter. When Duchamp described his method in 1914, he observed that 

the falling thread distorts “itself as it pleases” and the final result becomes 

“the meter diminished,” subverting both the straightness and the length 

of what commonly goes unquestioned (Duchamp 1975, 141–142). On his 

use of randomness, Duchamp said, “Pure chance interested me as a way of 

going against logical reality” (Cabanne 1971, 46).

 Duchamp, like the other Dada artists with whom he associated, saw 

“logical reality” as a failure, epitomized by the horrors of World War I. Sat-

ire, absurdity, and the embrace of indeterminacy seemed to the Dadaists to 

be the most “reasonable” response to modernity. In the words of the Dada 

artist Jean (Hans) Arp, “Dada wished to destroy the reasonable frauds of 

men and recover the natural, unreasonable order. Dada wished to replace 

the logical nonsense of the men of today with an illogical nonsense.” To 

Arp, individual authorship was synonymous with authoritarianism and ran-

dom elements were used to liberate the work (Motherwell 1989, 266).

 The major twentieth-century composer to explore randomness was 

certainly John Cage, who was strongly influenced by Duchamp. From Cage’s 

point of view, random elements remove individual bias from creation; they 

may be used to reach beyond the limitations of taste and bias through 

“chance operations.” Cage influenced generations of artists through his 

compositions as well as through his writing, lectures, and classes. In his text 

“Experimental Music,” Cage wrote, “Those involved with the composition 

of experimental music find ways and means to remove themselves from the 

activities of the sounds they make. Some employ chance operations, de-

rived from sources as ancient as the Chinese Book of Changes, or as mod-

ern as the tables of random numbers used also by physicists in research” 

(1966, 10).

 Cage’s method of random composition was to create a system of pa-

rameters and then leave the results to circumstance. Cage explained, “This 

means that each performance of such a piece of music is unique, as inter-

esting to its composer as to others listening. It is easy to see again the par-

allel with nature, for even with leaves of the same tree, no two are exactly 

alike” (1996, 11). Random components are used to transform a single com-

position into a space of potential compositions. Over the decades, Cage 

used an array of techniques to insert unexpected elements into his compo-

sitions. He defines the range of techniques he and his contemporaries used 

in the 1958 lectures “Composition as Process.” There are generally two 
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methods for using random values in music: to define the work at the time 

of composition or to allow for variation when the work is performed. The 

most obvious use of randomness in 10 PRINT is in the second category as 

random decisions are made during the program’s execution—that is, while 

the BASIC instructions are performed by the Commodore 64.

 Within two-dimensional visual art, artists also explored mechanical 

random processes for reasons championed by Cage. The eminent con-

temporary painter Gerhard Richter provided a simple answer to this meth-

od’s benefits when he said, “I’m often astonished to find how much better 

chance is than I am.” There are precedents for chance used within visual 

works dating back to collage works by Arp from 1916, but the two early 

works most relevant in the discussion of 10 PRINT are the Spectrum of 

Colors Arranged by Chance collage series (1951) by Ellsworth Kelly and 

Random Distribution of 40,000 Squares Using the Odd and Even Numbers 

of a Telephone Directory (1961) by François Morellet. These works start 

with an even grid and fill the grid carefully with elements based on the 

algorithms developed by the artists. Kelly uses squares of colored paper, 

placed according to a system he designed. He assigned a number to each 

color and plotted the numbers on the grid systematically (Malone 2009, 

133). Morellet employed a stricter system, reading a series of numbers 

from the telephone book. He made a grid of 200 vertical and horizontal 

lines, painting a square blue if its assigned number is even, painting it red 

if it is odd. In both of these artworks and in 10 PRINT, the structure of the 

grid is what makes it possible to focus on the variability created through 

the random operations.

A Million Random Digits

The need for large batches of random numbers is so acute that there are 

standardized collections of them. In Deborah Bennett’s history of humans’ 

quest for randomness—which she suggests goes as far back as ancient 

Babylonia (1998, 17)—she highlights one of the earliest and largest sets 

of random numbers, A Million Random Digits with 100,000 Normal Devi-

ates (135). This series of numbers (figure 40.1) was generated in 1947 from 

“random frequency pulses of an electronic roulette wheel” by the RAND 

Project, a research and development think tank that would eventually be-

come the RAND Corporation. The 1955 publication of the series in book 
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form was an important contribution to any study of probability; the book is 

still in use today. As the forward to the undated online edition of the table 

notes:

 The tables of random numbers in the book have become a standard 

 reference in engineering and econometrics textbooks and have been 

 widely used in gaming and simulations that employ Monte Carlo trials. 

 Still the largest known source of random digits and normal deviates, 

 the work is routinely used by statisticians, physicists, polltakers, market 

 analysts, lottery administrators, and quality control engineers. (RAND  

 Corporation 1955)

Considering its sophisticated origins and uses, A Million Random Digits 

proposes a surprisingly unscientific method of using the book: “In any use 

of the table, one should first find a random starting position. A common 

procedure for doing this is to open the book to an unselected page of the 

digit table and blindly choose a five-digit number.” The RAND report goes 

on to somewhat ominously explain that its one million random numbers 

were originally “prepared in connection with analyses done for the United 

States Air Force.” Like so many other advances in computing, randomness, 

it turns out, is intimately linked to Cold War military strategies. In fact, most 

of the early work on computer-based random number generation was per-

formed under the auspices of the U.S. Atomic Energy Commission see, for 

example, Rotenberg’s [1960] work in the late 1950s) or the U.S military (see 

Green, Smith, and Klem’s [1959] work at MIT, done with joint support of the 

U.S. Army, Navy, and Air Force).

RANDOMNESS COMES TO COMPUTING

The RND command acts as the algorithmic heart of 10 PRINT, its flip-flop-

ping beat powering the construction of the maze. The RND function is as 

fully specified as any BASIC keyword, but its output is, by that definition, 

unpredictable. Mathematicians and computer scientists don’t think in terms 

of predictability, though; rather, the standard mathematical treatment of 

randomness defines randomness in terms of probability. A random process 

generates a sequence of values selected from a set of possible values ac-
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Figure 40.1

A Million Random Digits with 100,000 Normal Deviates was published in 1955 by 

the RAND Corporation and was the largest list of random values yet published. It 

was necessary for RAND to execute their research without repeating values from 

previously published, smaller number tables.
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cording to a probability distribution. In the case of a discrete distribution 

(heads or tails, for instance), the distribution explains how much weight is 

on each possible outcome—how likely that value is to appear.

 If, for example, one draws a single card from a thoroughly shuffled 

deck, the probability distribution from which this draw is done is uniform: 

it is equally likely that any particular card will be chosen. Similarly, random 

numbers are typically defined as numbers drawn from a uniform distribu-

tion over all possible numbers in some range. A difficulty with this defini-

tion is that the randomness of a number is defined in terms of that range. 

Given a number such as 42, it is impossible to tell how random a selection 

it was. To determine randomness without knowing the means of genera-

tion, one must consider a sequence of numbers; knowing the range in 

which the numbers are supposed to lie or, more generally, the distribution 

from which they are supposed to be drawn, is also essential.

 Digital computers are deterministic devices—the next state of the 

machine is determined entirely by the current state of the machine. Thus, 

computer-based random number generators are more technically described 

as pseudorandom number generators. The somewhat dismissive-sounding 

“pseudo” refers to the fact that a deterministic process (a computer pro-

gram) is being used to generate sequences of numbers that appear to 

be uniformly distributed. This works well in practice for sequences that 

aren’t astronomically long. But eventually, for long enough sequences, 

the deterministic nature of a pseudorandom number generator will be un-

masked, in that eventually statistical properties of the generated sequence 

will start diverging from those of a true random process. In an extremely 

long sequence, for example, a true random process will generate the same 

number many times in a row. A version of 10 PRINT running using a true 

random process will eventually generate the regular image in figure 40.4 

(and the image in figure 40.5, and every other possible pattern), while the 

pseudorandom number generator in the Commodore 64 will not. Tests for 

long runs are one of the many statistical tests used to judge the quality of 

pseudorandom number generators.

 An obvious question to ask about randomness is why a computer 

would need to implement it in any form. Chance might produce stunning 

poetry, breathtaking art, uncanny music, and compelling games, but what 

is its role in the sciences? Why provide a calculating machine with the abil-

ity to generate random numbers in the first place? Certainly, one stereo-
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type of computing is that it is done exactly, repeatedly, with perfect preci-

sion and accuracy. Computers are commonly thought to order the world, 

to sift through reams of data and then model possible outcomes, possible 

futures, providing certain—and deterministic—answers. Yet a function to 

generate random numbers was present in the first Dartmouth BASIC. Every 

version of BASIC since then has had one or more ways to create random 

numbers. Nearly every contemporary programming language, including 

Python, Perl, Java, JavaScript and C++, has a built-in way to generate  

randomness.

 Quite simply, the answer to this puzzle is that randomness is necessary 

for any statistical endeavor, any simulation that involves unknown variables. 

Practically everything involves unknown variables: the meteorological con-

ditions at a rocket launch site, the flow of air under a bomber’s wings, and 

the spread of an infectious disease. Additionally, there is the movement 

and halting of traffic, the cost of bread, and the drip of water from the 

kitchen faucet. Forecasting any of these phenomena requires reckoning 

with uncertainty, which in turn requires a pool of random numbers. Further-

more, one or two random numbers are not enough. Large-scale statistical 

calculations or simulations require large batches of random numbers.

 John von Neumann was the first to propose the idea of harnessing 

a computer to generate random numbers (Knuth 1969, 3). It was around 

1946 and von Neumann was fresh off the Manhattan Project and soon to 

begin his lead work on the hydrogen bomb. Seeking a way to statistically 

model each stage of the fission process, von Neumann and his colleague 

Stanislaw Ulam first relied on the Monte Carlo method to generate tables 

of random numbers. These tables, however, soon grew too large to be 

stored on computers (Bennett 1998, 138–139). Von Neumann’s solution 

was to design a computer program to produce random numbers on the fly, 

using the middle-square method. It worked by squaring an initial number, 

called the seed, and extracting the middle digits; this number was then 

squared again, and the middle digits provided a new random number (von 

Neumann 1961). Because each number is a function of the one before it, 

the sequence, as Donald Knuth explains, “isn’t random, but it appears to 

be” (3)—that is, it is “pseudorandom.”
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GRAPHING RANDOM MAZES

Randomness has enabled the construction of mazes for decades. These mazes are 

not grown in a careful arrangement of hedgerows, or built amid the mossy walls of 

Cretan dungeons. Instead, they are typically graphs, mathematical objects consist-

ing of a set of nodes (also called vertices), pairs of which may be connected with a 

link (also called an edge). Graphs, or networks, don’t need to have any particular 

geometry. They are simply nodes linked to other nodes, and they can be drawn on 

paper in many different ways that are correct representations.

 Consider, however, a piece of graph paper, blank white except for a regular 

grid of pale blue lines. Each point where two lines cross can be taken to represent a 

node, while the lines between these points can define links. This construction, based 

on a lattice, is a special kind of graph called a grid graph. Using a pencil and trac-

ing only along the pale blue demarcations, how does one draw a maze whose links 

(hallways) connect all of the nodes (rooms) to each other?

 Graph theory, a field of mathematics, offers a number of methods for produc-

ing random mazes of this kind. The most well-known approaches are algorithms for 

calculating a minimal spanning tree, a graph in which all links are connected and with 

only one simple path between any two points. (Minimum spanning trees are found 

to solve problems in various domains, from phone networks to demographic analy-

sis.) Because they lack cycles—there is exactly one path between any two nodes—

the mazes produced by such trees are called “perfect mazes.” Spanning solutions 

are not always mazes in the multicursal sense; they don’t need to have forking paths. 

For example, on a grid graph, it’s possible to create a minimal spanning tree using 

a single line, winding back and forth on a labyrinthine path until the page is filled. 

Of the myriad spanning solutions to a piece of graph paper, however, the vast ma-

jority of them are branching mazes. Thus, selecting a solution at random can be a 

good way to produce different mazes. A straightforward maze-generation technique 

involves adding random values (or weights) to all the links in the grid graph, then 

employing an algorithm to find a minimum spanning tree and thus generate a maze. 

Depending on the algorithm used, the resulting mazes may reflect different aesthet-

ics, for instance, having different proportions of shorter and longer paths.

 Significant minimum spanning tree algorithms were pioneered by Czech math-

ematicians in the early twentieth century (Otakar Borůvka in 1926; Vojtěch Jarník in 

1930) and independently rediscovered many times thereafter, including decades 
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COMPUTATIONAL RANDOMNESS IN THE ARTS

To those interested in randomness and expressive culture, perhaps the 

most intriguing element of Donald Knuth’s magisterial discussion of ran-

dom numbers appears in a footnote. Knuth recalls a CBS television docu-

mentary in 1960 called “The Thinking Machine” which featured “two West-

ern-style playlets” written by a computer (Knuth 1969, 158–160). In fact, 

three playlets were acted out on national television that day in October 

1960, generated by a TX-0 computer housed at MIT’s Electronics Systems 

Laboratory. SAGA II, the script-writing program behind the mini Westerns, 

took programmers Douglas Ross and Harrison Morse two months to de-

velop and consisted of 5,500 instructions (Pfeiffer 1962, 130–138). The key 

to SAGA II was its thirty “switches,” which made “various alternative or 

branching paths” possible (136). “Among other things,” Pfeiffer observed, 

“the robber may go to the window and look out and then go to the table, 

or he may go to the table directly. You cannot tell in advance which one of 

these alternatives the program will select, because it does the equivalent 

of rolling a pair of dice” (136).

 Even before the SAGA II playlets, there were other literary experi-

ments with randomness and computers. Noah Wardrip-Fruin identifies the 

later by computer scientists writing in English (e.g., Sollin in 1965). Two of the most 

well-known maze-generating algorithms in graph theory today are Joseph Kruskal’s 

and Robert Clay Prim’s. Both algorithms were published in 1957—although Prim’s 

was a rediscovery of Jarník’s and was in turn rediscovered by Dutch computer scien-

tist Edsger W. Dijkstra, famous opponent of GOTO, in 1959 (Foltin 2011, 15). Both are 

greedy algorithms, which means that they choose the best link to take at every turn. 

Kruskal’s algorithm chooses across the entire graph, while Prim’s algorithm builds 

up a connected path. These algorithms can be modeled with paper and pencil, but 

computational randomization allows them to rapidly generate a plethora of maze 

forms, thanks to the interaction of the regularity of the grid, the deterministic algo-

rithm, and the random weighting of links.
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British computer scientist Christopher Strachey as the creator of the first 

work of electronic literature, a series of “love letters” generated by the 

Ferranti Mark I computer at Manchester University in 1952 (Wardrip-Fruin 

2005). Affectionately known as M.U.C., the Manchester University Com-

puter could produce the evocative love letters at a pace of one per minute, 

for hours on end, without producing a duplicate. The “trick” is, as Strachey 

put it, the two model sentences (e.g., “My adjective noun adverb verb 

your adjective noun” and “You are my adjective noun”) in which the nouns, 

adjectives, and adverbs are randomly selected from a list of words Strachey 

had culled from Roget’s Thesaurus. Adverbs and adjectives randomly drop 

out of the sentence as well, and the computer randomly alternates the two 

sentences. On the whole, Strachey is dismissive of his foray into the literary 

use of computers, using the example of the love letters simply to illustrate 

his point that simple rules can generate diverse and unexpected results 

(Strachey 1954, 29–30). Nonetheless, a decade before Raymond Que-

neau’s landmark combinatory work One Hundred Thousand Billion Poems, 

Strachey had unwittingly laid the foundation for the combinatory method 

of composition by computer, a use of randomness that would grow more 

central to literature and the arts in the following decades.

 Other significant early works involving random recombination had 

more visible connection to literary tradition and artistic movements. The 

1959 “Stochastic Texts” of Theo Lutz combined texts from Franz Kafka 

with logical operations to produce “EVERY CASTLE IS FREE. NOT EVERY 

FARMER IS LARGE” among other statements (Lutz 1959/2005). In the next 

decade, Fluxus artist Alison Knowles and James Tenney, a programmer 

who worked in FORTRAN, devised A House of Dust. The program’s out-

put combines a regular stanza form and repetition with random variation 

in vocabulary, and was printed on a scroll of line printer paper for a 1968 

chapbook publication (Pearson 2011, 194–203). More than a decade later, 

Jackson Mac Low made use of the venerable book A Million Random Dig-

its to devise “Converging Stanzas,” which were randomly populated with 

words from the 1930 850-word Basic English Word List (Mac Low 2009, 

236). This poet’s “Sade Suit” similarly used playing cards and A Million 

Random Digits to rewrite the work of Marquis de Sade (46).
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Early Experiments in Computational Art

The 1960s were a time of radical experimentation with randomness in the 

visual arts. Even though computers were available at that point for the 

exploration of chance operations, they were used in a very limited way be-

cause it was difficult to gain access to the machines, and there was a gen-

eral distrust of computer technology in the arts. The 10 PRINT program 

is remarkable because it was created later, when these barriers were far 

fewer. The Commodore 64 was relatively inexpensive and accessible. The 

public image of the computer was changing from a machine that support-

ed technocracies to a tool for self-empowerment and creativity. Before per-

sonal computers, calculating machines could only be found in universities 

and research labs and, because of their cost and perceived purpose, they 

were typically used exclusively for what seemed more serious work, not for 

creating aesthetic images. When artists did gain access to these machines, 

it was typically through artists-in-residence programs at companies such 

as Bell Labs and IBM, and through infrastructures such as Experiments in 

Art and Technology (E.A.T.) based in New York or the Los Angeles County 

Museum of Art’s Art and Technology initiative. Many of the first aesthetic 

computer graphics were made not by artists, but by mathematicians and 

engineers who were curious about other uses to which the machines at 

their labs could be put.

 Within the first years that computer images were made, random pro-

cesses were explored thoroughly. The first two exhibitions of computer-

generated graphics appeared in art galleries in 1965; both shows included 

pieces that were created using random values. In New York, the works of 

A. Michael Noll and Bela Julesz, both researchers at Bell Labs, were ex-

hibited at the Howard Wise gallery from April 6–24, 1965,  under the title 

“Computer-Generated Pictures.” In Stuttgart, the works of Georg Nees 

and Frieder Nake were exhibited at the Wendelin Niedlich Gallery from 

November 5–26, 1965, under the title “Computer-Grafik Programme.”

 In 1962, Noll published a technical memorandum at Bell Labs en-

titled “Patterns by 7090,” the number referring to the IBM 7090 digital 

computer. He explained a series of mathematical and programming tech-

niques that use random values to draw “haphazard patterns” to a Carlson 

4020 Microfilm Printer. The eight patterns documented in the memo are 

the basis for his Gaussian Quadratic image that was exhibited in the 1965 
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exhibition. Noll used existing subroutines of the printer to draw a sequence 

of lines to connect a series of x- and y-coordinates that he calculated and 

stored inside an array. The x-coordinates in the array were generated by a 

custom subroutine he wrote called WNG (White Noise Generator), which 

produced random values within the range of its parameters, and the y-

coordinates were set using a quadratic equation. Through this series of 

patterns, Noll explored a tension between order and disorder, regularity 

and random values.

 In 1965, Nake created his Fields of Rectangular Cross Hatchings se-

ries, which succeeds through pairing ordered patterns with random place-

ment (figure 40.2). Nake explained the way random values are used in the 

images:

 Within a given (arbitrarily chosen) image size, a random number 

 of hatchings were generated. Each one of them was determined 

 by the following random variables: location (x, y), size (a, b), 

 orientation of lines within rectangle (horizontal or vertical), number 

 of lines, pen. So for each rectangle there were seven random 

 numbers determining its details. (Nake 2008)

After the first wave of visual images were created on plotters and microfilm 

at universities and research labs, a few professional artists independently 

started to gain access to computers and use them in their practice. The 

artists with the most success integrating a computer into their work had 

previously created drawings using formal systems. These artists continue 

to use computers in their work to this day. Artists who worked seriously 

with computers in the late 1960s, either individually or with technical col-

laborators, include Edward Zajec, Lillian Schwartz, Colette Bangert, Stan 

Vanderbeek, Harold Cohen, Manfred Mohr, and Charles Csuri. All of them 

employed random numbers in their early works created with software.

 Manfred Mohr, for example, started as a jazz musician and later stud-

ied art in Paris; he began writing software to create drawings in 1969, at the 

Meteorological Institute of Paris, during the night after researchers had left 

for the day. In 1971, Mohr’s work was featured in “Une Esthétique Program-

mée” at the Musée d’Art Moderne de la Ville de Paris (see figure 40.3), 

the first solo exhibit of artworks created with a computer at a museum. 

Random values are used extensively in the creation of the work shown. 
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Figure 40.2

Frieder Nake, Fields of Rectangular Cross Hatchings, Overlaid by Vertical Lines.

22/10/65 Nr. 2. Computer drawing, ink on paper, 50 × 44 cm. Collection Etzold,

Museum Abteiberg Mönchengladbach. Courtesy of Frieder Nake. ©1965, Frieder 

Nake.
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 Charles Csuri’s Random War (1967) is an early notable work of com-

puter art to use random values. Like much of Csuri’s early computer work 

and unique in relation to his contemporaries, Random War is figurative 

rather than abstract. This plotter drawing comprises outlined military fig-

ures, patterned off of the toy figures of little green army men that were 

popular at the time. Each figure, named after a real person, is placed ran-

domly on the page and randomly given a status: dead, wounded, or miss-

ing. The soldiers of one army are drawn in red, of the other army in black; 

the name and status of each soldier appear at the top of the drawing. In 

general terms, Csuri’s work comments on the often arbitrary nature of war 

through both its form and its content; more specifically, with his reliance on 

random number generation, Csuri gestures toward the days of computers, 

random numbers, and their inextricable link to the Cold War.

Figure 40.3

Manfred Mohr, P-071, 1970. Plotter drawing, ink on paper, 13.75 × 16.5” / 35 × 42 

cm. Courtesy of bitforms gallery nyc. ©1970, Manfred Mohr.
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Acceptance and Resistance

While the first decade of computer-generated art was well documented in 

magazines, books, and exhibition catalogues, there are fewer source mate-

rials from the 1970s, when public interest veered and the energy needed to 

publish and exhibit waned. Later in the decade, computer graphics started 

to make their way into advertising and films. The 1982 film Tron is a land-

mark in the history of computation and aesthetics that pushed graphics to a 

new aesthetic level and therefore revealed the limitations of computer im-

agery at that time. Tron’s images are purely geometric and cold; they lack 

the organic qualities of our natural world. Ken Perlin, one of the program-

mers for the graphics in Tron, expressed frustration with the clean look. 

Later, in 1983, he developed a technique called Perlin Noise to generate 

organic textures that have a random appearance even though they are fully 

controllable to allow for careful design. Perlin Noise makes it possible for 

computer graphics models to have the subtle irregularities of real objects; 

it is used to create hard surfaces such as rocks and mountains and softer 

systems like fire and clouds. By the 1990s, it was being used extensively in 

Hollywood special-effects films and had been incorporated into most off-

the-shelf modeling software.

 Today the most widely known artists to use random values still do 

so without computers. For example, 2002 Turner Prize winner Keith Tyson 

designed sculptures not by using a computer to produce random numbers, 

but by rolling dice. One reason for this sort of reluctance to use comput-

ers, certainly, is the stigma surrounding computers in art. As Manfred Mohr 

remarked in an interview, “I called my work generative art, or occasionally 

also algorithmic works. The problem was that no-one understood either 

of these terms, and I was forced—so to speak—to declare my drawings as 

art from the computer . . . people accused me of degrading art, because I 

was employing capitalistic instruments of war—computer was a word non 

grata!” (Mohr 2007, 35). While Mohr was referring to the situation in the 

1970s, the aversion to computers in art remains strong today.

 More recently, however, as a new generation of visual artists have 

started to program their work, computed random numbers are playing an 

increasing role in the visual landscape. The most prominent programming 

languages used by visual artists have functions for generating random num-

bers and noise values, as well as for setting the random seed value to allow 
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RANDOMNESS IN CONTEMPORARY COMPUTING

In the many examples of randomness given here, the random element of the pro-

cess—whether computational, literary, or aesthetic—is often foregrounded, or at 

least made very obvious. Randomness is not always visible, however, even though 

it is often used in ordinary computing tasks. Randomness plays an essential role 

in the security of networked computers, for instance, and is also a part of popular 

computer games. Other uses of randomness lie beyond the everyday computing 

experience, but security, networking, and gaming are a few of the ones that are 

closest at hand.

 When a computer needs to generate a new password for a user, a URL that will 

let someone reset a password, or a CAPTCHA to keep automated spammers at bay, 

randomness is invoked. A nonrandom password could easily be predicted, but a 

random password, URL, or distorted word is much harder to crack through guessing 

or brute force. Randomness also plays a behind-the-scenes role in protocols such as 

SSH (Secure Shell) and SSL (Secure Sockets Layer) in a few ways, including the gen-

eration of keys for encryption and padding out the rest of a block when a plain-text 

message is too short to complete it. Without randomness, it would not be possible 

to complete a secure credit card transaction on the Web, which happens over SSL. 

Early versions of SSL as implemented in the Netscape browser suffered from being 

insufficiently random: The seeds for random number generation were the current 

time, the process ID, and the parent process ID, which were sufficiently predictable 

to leave the browser vulnerable to attack. Better randomness was the solution to this 

problem.

 Computers using Ethernet—almost all of those that are plugged into wired 

networks—communicate with one another thanks to randomness, too. All systems 

on a single local area network send information over the same wire. If two of them 

start sending on this single wire at the same time, what is known as a “collision” 

occurs; the data sent is not intelligible to the intended recipients. When a collision 

happens, the computer that detects the problem sends a jamming signal and tries 

to restart the transmission. But rather than restarting immediately, the computer 

chooses at random to start or wait—and the other computer that was trying to send 

does the same. If there is another collision, the computers either send immediately 

or wait for one of three intervals. The increasing number of intervals is part of the 

technique of exponential backoff; the selection of one of these intervals at random 
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is an essential part of this method of avoiding network congestion.

 A typical computer user of the 2010s will encounter randomness in many com-

puter games. Randomness will shuffle the cards in poker or solitaire, for example, 

and will be invoked to arrange jewels and tiles in casual games. Randomness may 

also be used to determine the behavior of computer opponents, whether in poker, 

chess, or a first-person shooter. Some action, arcade-style, open-world, and other 

types of games incorporate randomness in other ways to determine what happens. 

Many early games and certain contemporary ones, however, are entirely determin-

istic. As those who discovered and exploited Pac-Man patterns know, that game is 

deterministic; Ms. Pac-Man, in contrast, uses randomness.

 Though modern computers have many ways to provide initial values to seed 

their pseudorandom number generators, when higher levels of randomness are re-

quired one of the most reliable methods is to look beyond the computer. External 

entropy collection means that the random seed cannot be determined by knowing 

information about the computer’s hardware, a common source for seeds inside the 

computer. In some cases the computer has to turn to a human to become more ran-

dom, recording data from users mashing the keys on their keyboard or wiggling their 

mouse around to generate a random key or password. Even more unguessable are 

inputs from physical systems of sufficient complexity—anything from video of a lava 

lamp to atmospheric radio distortions can be used to create random numbers for 

computation. These levels of randomness are now required for demanding applica-

tions like high-level cryptography and scientific simulations. With continual increases 

in processing power, attacks on encryption are becoming easier, and the goal of 

making random numbers more random will be critical for securing society’s constant 

digital transactions.
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for the repetition of sequences. With the perspective of time, it seems that 

aesthetic computational work and random values are intertwined. Writing 

in 1970, Noll highlights randomness as an essential feature of the com-

puter in relation to the arts: 

 The computer is a unique device for the arts since it can function solely as

 an obedient tool with vast capabilities for controlling complicated and 

 involved processes, but then again, full exploitation of its unique talents 

 for controlled randomness and detailed algorithms could result in an entirely 

 new medium—a creative artistic medium. (Noll 1970, 10)

THE COMMODORE 64 RND FUNCTION

The way that 10 PRINT invokes the randomness provided by the Com-

modore 64 is of interest for reasons that will each be explored in turn. 

First, using randomness is aesthetically necessary in this program; there 

is no other way to achieve a similar effect. Second, the methods used in 

Commodore 64 BASIC are historically quite typical of computational ap-

proaches to pseudorandomness since the 1950s. Finally, out of several 

common approaches to randomness available on the Commodore 64, 10 

PRINT uses a very standard method that is well suited to experimentation, 

debugging, and the production of canonical results, although this method 

is not without its deficiencies.

 10 PRINT produces a wrapping series of diagonal lines that alternate 

between left and right unpredictably. This unpredictability is crucial to pro-

ducing the impression of a maze. Looking at variations of 10 PRINT that 

have regular or no alternation demonstrates the significance of random-

ness in the program. It’s possible to write an even simpler program than 

10 PRINT to draw only the left diagonal to the screen in a regular pattern 

(figure 40.4):

 10 PRINT CHR$(205); : GOTO 10

This program can be extended by writing the other diagonal character to 

the right to form a chevron that repeats (figure 40.5):
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Figure 40.4

Screen capture from 10 PRINT CHR$(205); : GOTO 10,  

a regular repetition of the ╲ character.

Figure 40.5

Screen capture from 10 PRINT CHR$(205)CHR$(206); : GOTO 10,  

a regular repetition of the ╲ character followed by ╱.
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 10 PRINT CHR$(205)CHR$(206); : GOTO 10

The next step in this elaboration is the canonical 10 PRINT, which draws 

either the left or right diagonal to the screen based on the result of the 

random number (figure 40.6):

 10 PRINT CHR$(205.5+RND(1)); : GOTO 10

In 10 PRINT, random numbers are provided through RND, one of ten math-

ematical functions available in BASIC since the earliest version of the lan-

guage. As described the original Dartmouth BASIC manual (1964), RND 

produces a “new and different random number” between 0 and 1 “each 

time it is used in a program” (39). These numbers can then be used to drive 

unpredictable processes, as in fact they do drive the coin-toss decision 

between diagonal lines in 10 PRINT output. A similar process might also 

determine the direction changes of ghosts in Ms. Pac-Man or the way other 

game elements appear or behave.

 RND is, like most computational sources of randomness, a pseudoran-

dom number generator. While there may be no apparent pattern between 

any two numbers, each number is generated based on the previous one 

using a deterministic process. When the first number is the same, the en-

tire sequence will always be the same. In the case of the Commodore 64, 

this is particularly important because the same seed, and thus the same 

first number, is set at startup. So when RND(1) is invoked immediately 

after startup, or before any other invocation of RND, it will always produce 

the same result: 0.185564016. The next invocation will also be the same, 

no matter what Commodore 64 is used or how long the system has been 

on. The next invocation—and all others—will also be the same. Since the 

sequence is deterministic, the pattern produced by the 10 PRINT program 

typed in and run as the first program is always the same, on every computer 

or well-functioning emulator.

 When called on any positive number, as when RND(1) is invoked 

in 10 PRINT, RND produces the next number in this sequence. RND(8), 

RND(128), and RND(.333) do exactly the same as RND(1). RND, how-

ever, has two other modes besides the one used in 10 PRINT. The sec-

ond is stopwatch-based: when RND(0) is called, the clock time since the 

computer was powered on is used in generating a new seed, meaning 
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that if RND(0) replaces RND(1), each run of 10 PRINT at a different 

second should generate a different output. After a single call to RND(0), 

subsequent calls to RND(1) will continue generating numbers in that new 

sequence.

 The third mode for RND applies when any negative number is called. 

A call to RND(−17) stores −17 as the seed value for the random number 

generator, directly, and produces a new number. This negative seeding 

must be followed by positive calls to the function, such as RND(1), in or-

der to provide a useful sequence. Because negative calls simply set the 

seed, calling RND(−1) repeatedly will always return 0.544630526. For this 

reason, 10 PRINT could not be a single-line loop that calls a negative RND 

value; that program would output the same diagonal again and again. A 

single call to RND, however, with any negative number, followed by the 

rest of the 10 PRINT program, will generate a unique (and repeatable) 10 

PRINT pattern.

 Pseudorandomness, however lacking it may sound, is generally ac-

ceptable and in many situations desirable. Engineers running a computer 

simulation, for example, often have many random variables, but every run 

Figure 40.6

Screen capture from 10 PRINT CHR$(205.5+RND(1)); : GOTO 10, 

which has a 50/50 chance of writing a ╲ or ╱ at each loop.
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of the simulation needs those variables to have the same values; otherwise 

the program cannot be tested or the experiment repeated. Pseudorandom 

number generators are also highly useful in hashing, since they allow data 

to be distributed widely but also placed in known locations. Similarly, they 

are useful in cryptography, where it is vital that sequences be repeatable if 

(and only if) the initial conditions are known.

 The Commodore 64 User’s Guide introduces the concept of random-

ness using an example that sidesteps the origins of randomness in com-

puting. There is no mention of the hydrogen bomb, computer-generated 

literature, or prime numbers. Randomness comes into play in the shape of 

a game when it is necessary to, as the manual puts it, “simulate the throw 

of dice” (Commodore 1982, 48). This example takes the reader back to 

preindustrial notions of randomness. Yet, centuries ago, long before Mal-

larmé provided his assurance that a throw of the dice would not abolish 

chance, Sir Walter Raleigh wrote of this event as apocalyptic: 

 Dead bones shall then be tumbled up and down,

 In every city and in every town.

Fortune’s wheel and what Paul Auster called The Music of Chance have 

long been considered a matter of life and death. As 10 PRINT scrolls its 

playful, pleasing maze pattern upon the screen, there may be the faint-

est echo of the dead bones of the dice and the random simulation of the 

hydrogen bomb. And perhaps, as well, there is the transformation of this 

grim, military use of randomness into a thing of beauty.
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