%U cah and musf vn q’cu?fum/ confUTe*: Now).

ryg .

% A 0000 0 .

Ty o .
Engineering & r
Applied Science ve
Library

=i First Editi-

L. L T - - —— e o

(oMPUTER [\B

&) 11Ty Theodor H Nelsoa.

IFTH PRINTING March'77
Copies available $7.00 for one,
$50. for ten (with order) OR
wholesale from: the distributors

702 S Michigan So Bend IN 46618

Any mitwit can understand computers, and many ao.
Unfortunately , due to ridiculous historical circumstances,
computers have been made a mystery to most of the world.
And this situation does not seem to be improving. You
hear more and more about computers, but to most people
it's just one big blur. The people who know about computers
often seem unwilling to explain things or answer your ques-
tions. Stereotyped notions develop about computers operating
in fixed ways-- and so confusion increases. The chasm
between laymen and computer people widens fast and danger-
ously .

This book is a measure of desperation, so serious
and abysmal is the public sense of confusion and ignorance.
Anything with buttons or lights can be palmed off on the
layman as a computer. There are so many different things,
and their differences are so important; yet to the lay public
they are lumped together as "computer stuff,” indistinct
and beyond understanding or criticism. It's as if people
couldn't tell apart camera from exposure meter or tripod,
or car from truck or tollbooth. This book is therefore devoted
to the premise that

EVERYBODY SHOULD UNDERSTAND COMPUTERS.

It is intended to fill a crying need. Lots of everyday people
have asked me where they can learn about computers, and
1 have had to say nowhere. Most of what is written about
computers for the layman is either unreadable or silly.
(Some exceptions are listed nearby; you can go to them
instead of this if you want.) But virtually nowhere is the
big picture simply enough explained. Nowhere can one
get a simple, soup-to-nuts overview of what computers

are really about, without technical or mathematical mumbo-
jumbo, complicated examples, or talking down. This book
is an attempt.

(And nowhere have I seen a simple book explaining
to the layman the fabulous wonderland of computer graphics
which awaits us all, a matter which means a great deal
to me personally, as well as & lot to all of us in general.
That's discussed on the flip side.)

Computers are simply a necessary and enjoyable
part of life, like food and books. Computers are not everything,
they are just an aspect of everything, and not to know this
is computer illiteracy, a silly and dangerous ignorance.

Computers are as easy to understand as cameras.
I have tried to make this book like a photography magazine--
breezy, forceful and as vivid as pos<ible. This book will
explain how to tell apples from oranges and which way
is up. If you want to make cider, or help get things right
side up, you will have to go on from here.

I am not a skillful programmer, hands-on person
or eminent professional; 1 am just a computer fan, computer
fanatic if you will. But if Dr. David Reuben can write about
sex I can certainly write about computers. I have written
this like a letter to a nephew, chatty and personal. This
is perhaps less boring for the reader, and certainly less
boring for the writer, who is doing this in a hurry. Like
a photography magazine, it throws at you some rudiments
in a merry setting. Other things are thrown in so you'll
get the sound of them, even if the details are elusive.
(We learn most everyday things by beginning with vague
impressions, but somehow encouraging these is not usually
felt to be respectable.) What I have chosen for inclusion
here has been arbitrary, based on what might amuse and
give quick insight. Any bright highschool kid, or anyone
else who can stumble through the details of a photography
magazine, should be able to understand this book, or get
the main ideas. This will not make you a programmer or
a computer person, though it may help you talk that talk,
and perhaps make you fee! more comfortable (or at least
able to cope) when new machines encroach on your life.
If you can get a chance to learn programming-- see the
suggestions on p. -- it's an awfully good experience for
anybody above fourth grade. But the main idea of this
book is to help you tell apples from oranges, and which
way is up. I hope you do go on from here, and have made
a few suggestions.

1 am "publishing” this beok myself, in this first
draft form, to test its viability, to see how mad the computer
people get, and to see if there is as much hunger to understand
computers, among all you Folks Out There, as I think.
I will be interested to receive corrections and suggestions
for subsequent editions, if any. (The computer field is
its own exploding universe, so I'll worry about up-to-dateness
at that time.)

Summary OF THIS BooK

Man has created the myth of "the computer"” in his own image,
or one of them: cold, immaculate, sterile, "scientific,” oppressive.

Some people flee this image. Others, drawn toward it, have
joined the cold-sterile-oppressive cult, and propagate it like a faith.
Many are still about this mischief, making people do things rigidly
and saying it is the computer's fauit.

Still others see computer= for what they really are: versatile
gizmos which may be turned to any purpose, in any style. And so
a wealth of new styles and human purposes are being proposed and
tried, each proponent propounding his own dream in his own very
personal way.

This book presents a panoply of things and dreams.
some will appeal to the reader. ..

Perhaps

THE COMPUTER PRIESTHOOD

Knowledge is power and so it tends to be hoarded.
Experts in any field rarely want people to understand what
they do,and generally enjoy putting people down.

Thus if we say that the use of computers is dominated
by a priesthood, people who spatter you with unintelligable
answers and seem unwilling to give you straight ones,
it is not that they are different in this respect from any
other profession. Doctors, lawyers and construction engineers
are the same way .

But computers are very special, and we have to deal
with them everywhere, and this effectively gives the computer
priesthood a stranglehold on the operation of all large organiza-
tions, of government bureaux, and anything else that they
run. Members of Congress are now complaining about
control of information by the computer people, that they
cannot get the information even though it's on computers.

Next to this it seems a small matter that in ordinary companies
"untrained” personnel can't get straight questions answered
by computer people; but it's the same phenomenon.

It is imperative for many reasons that the appalling
gap between public and computer insider be closed. As
the saying goes, war is too important to be left to the generals.
Guardianship of the computer can no longer be left to a
priesthood. 1 see this as just one example of the creeping
evil of Professionalism,* the control of aspects of society
by cliques of insiders. There may be some chance, though,
that Professionalism can be turned around. Doctors, for
example, are being told that they no longer own people's
bodies.** And this book may suggest to some computer
professionals that their position should not be as sacrosanct
as they have thought, either.

This in not to say that computer people are trying
to louse everybody up on purpose. Like anyone trying
to do a complex job as he sees fit, they don't want to be
bothered with idle questions and complaints. Indeed, probab-
ly any group of insiders would have hoarded computers
just as much. If the computer had evolved from the telegraph
(which it just might have), perhaps the librarians would
have hoarded it conceptually as much as the math and en-
gineering people have. But things have gone too far.
People have legitimate complaints about the way computers
are used, and legitimate ideas for ways they should be
used, which should no longer be shunted aside.

In no way do | mean to condemn computer people
in general. (Only the ones who don't want you to know
what's going on.) The field is full of fine, imaginative
people. Indeed, the number of creative and brilliant people
known within the field for their clever and creative contri-
butions is considerable. They deserve to be known as widely
as, say, good photographers or writers.

"Computers are catching hell from growing multitudes

who see them

uniformly as the tools of the

regulation and suffocation of all things warm,
moist, and human. The charges, of course,

are not totally unfounded, but in their most
sweeping form they are ineffective and therefore
actually en acquiescence to the dehumanization
which they decry. We clearly need a much more

discerning ev

aluation in order to clarify the

ethics of various roles of machines in human

affairs.”
ot ;
{ i,
-
/
7 YALE UNlVERSITY LIBRARY
5(LC)

I INIHI llllllllll\\illl|l|l\lll|ll|ll\\|

engn

Ken Knowlton

in "Collaborations with Artists--
a Programmer's Reflections”

in Nake & Rosenfeld, eds.,
Graphic Languages
(North-Holland Pub. Co.),
p. 399.

* This is a side point. I see Professionalism as a spreading
disease of the present-day world, a sort of poly-oligarchy
by which various groups (subway conductors, social workers,
bricklayers) can bring things to g halt if their particular
new increased demands are not met. (Meanwhile, the irrele-
vance of each profession increases, in proportion to its
increasing rigidity.) Such lucky groups demand more

in each go-round-- but meantime, the number who are
permanently unemployed grows and grows.

**+ Ellen Frankfort, Vaginal Politics. Quadrangle Books.
Boston Women's Health Collective, Our Bodies, Qurselves.
Simon & Schuster.

This side of the book, Computer Lib proper (whose title is nevertheless
the simplest way to refer to both halves), is an attempt to explain simply and
concisely why computers are marvelous and wonderful, and what some main
things are in the field.

The second half of the book, Dream Machines, is specially about fantasy
and imagination, and new techniques for it. That half is related to this half,
but can be read first; I wanted to separate them as distinctly as possible.

The remarks below all refer to this first half, the Computer Lib half
of the book. -
s

4o

FANDOM

With this book I am no longer calling myself a computer
professional. I'm a computer fan, and I'm out to make you
one. (All computer professionals were fans once, but people
get crabbier as they get older, and more professional.)

A generation of computer fans and hobbyists is well on

its way, but for the most part these are people who have
had some sort of an In. This is meant to be an In for those
who didn't get one earlier.

The computer fan is someone who appreciates the
options, fun, excitement, and fiendish fascination of computers.
Not only is the computer fun in itself, like electric trains;
but it also extends to you a wide variety of possible personal
uses. (In case you don't know it, the price of computers
and of using them is going down as fast as every other
price is going up. So in the next few decades we may be
reduced to eating soybeans and carrots, but we'll certainly
have computers.)

Somehow the idea is abroad that computer activities
are uncreative, as compared, say, with rotating clay against
your fingers until it becomes a pot. This is categorically
false. Computers involve imagination and creation at the
highest level. Computers are an involvement you can really
get into, regardless of your trip or your karma. They
are toys, they are tools, they are glorious abstractions.

So it you like mental creation, toy trains, or abstractions,
computers are for you. If you are interested in democracy
and its future, you'd better understand computers. And
it you are concerned about power and the way it is being
used, and aren't we all right now, the same thing goes.

THE SOCIETY
Which brings us to our next topic.

There is no question of whether the computer will
remake society; it has. You deal with computers perhaps
many times & day-- or worse, computers deal with you,
though you may not know it. Computers are going into
everything, are intertwined with everything, and it's going
to get more and more so. The reader should have a sense
of the dance of options, the remarkably different ways
that computers may be used; by extension, he should come
to see the extraordinary range of options which confront
us as a society in our future use of them. Indeed, computers
have with a swoop expanded the options of everything.

But a variety of inconvenient systems already touch on
our lives, nuisances we must deal with all the time; and
I fear that worse is to come. I would like to alert the reader,
in no uncertain terms, that the time has come to be openly
attentive and critical in observing and dealing with computer
systems; and to transform criticism into action. If systems
are bad, annoying and demeaning, these matters should
be brought to the attention of the perpetrators. Politely
at first. But just as the atmospheric pollution fostered by
GM has become a matter for citizen concern and attack through
legitimate channels of protest, so too should the procedural
pollution of inconsiderate computer systems become a matter
for the same kinds of concern. The reader should realize he
can criticize and demand;

THE PUBLIC DOES NOT HAVE TO TAKE
WHAT'S BEING DISHED OUT.

AUTHOR'S CREDENTIALS

There is already a backlash against computers, and
the spirit of this anti-computer backlash is correct, but
should be directed against very specific kinds of things.
The public should stop being mad at "computers" in the
abstract, and start being mad at the people who make in-
convenient systems. It is not "the computer,” which has
no intrinsic style or character, which is at fault; it is people
who use "the computer" as an excuse to inconvenience you,
who are at fault. The mechanisms of legitimate public
protest-- sit-ins and so on-- should perhaps soon be turned
to complaint over bad and inhuman computer systems.

The question is, will the crummier trends continue?
Or can the public learn, in time, what good and beautiful
things are possible, and translate this realization into an
effective demand? 1 do not believe this is an obscure or
specialized issue. Its shadow falls across the future of
mankind, if any, like a giant sequoia. Either computer
systems are going to go on inconveniencing our lives, or
they are going to be turned around to make life better.
This is one of the directions that consumerism should turn.

I have an axe to grind: I want to see computers useful
to individuals, and the sooner the better, without necessary
complication or human servility being required. Anyone
who agrees with these principles is on my side, and anyone
who does not, is not.

THIS BOOK IS FOR PERSONAL FREEDOM,
AND AGAINST RESTRICTION AND COERCION.

That's really all it's about. Many people, for reasons of
their own, enjoy and believe in réstricting and coercing
people; the reader may decide whether he is for or against
this principle.

A chant you can take to the streets:

COMPUTER POWER TO THE PEOPLE!
DOWN WITH CYBERCRUD!

THE FUTURE, IF ANY

Simply as a matter of citizenship, it is essential to
understand the impact and uses of computers in the world
of the future, if any; and to have a sense of the issues about
computers that confront us as a people-- especially privacy
and data banks, but also strange new additions to our
economic system ("the checkless society™), our political
system (half-baked vote-at-home proposals), and so on.

I regret that there is not room to cover these here.

Various companies are seeking wide public support for
the sorts of things they are trying to bring about. Legislation
will be proposed on which the views of the public should
have a hearing. It is important that these be understood
sensibly by some part of the electorate before they are made
too permanent, rather than made matters of dumb assent.

Finally , and most solemnly, computers are helping
us understand the unprecedented danger of our future
(see "The Club of Rome," p.($). The human race may
have only a short time left on earth, even if there is no war.
These studies must be seen and understood by as many
intelligent men of good will as possible.

THEREFORE

Welcome to the computer world, the damndest and
craziest thing that has ever happened. But we, the computer
people, are not crazy. It is you others who are crazy to
let us have all this fun and power to ourselves.

COMPUTERS BELONG TO ALL MANKIND.

B.A., philosophy, Swarthmore; graduate study U. of Chicago; M.A., sociology, Harvard. Mostly self-taught in computers.

Member of editorial board, Computer Decisions magazine; listed in New York Times' Who's Who in Computers; member of
Association for Computing Machinery since 1964.

Research assistant, Communication Research Institute, 1962-3. Instructor in sociology, Vassar College, 1964-6.

Senior staff researcher, Harcourt, Brace & World Publishers, 1966-7. Consultant to Bell Telephone Laboratories, Whippany, N...
Consultant to CBS Laboratories, Stamford, Ct., 1968-9. Proprietor of The Nelson Organization, Inc., New York City, 1969-72.
Lecturer in art, instructional resources and computer science, U. Illinois at Chicago Circle, 1973-6.

Co-founder of the Itty Bitty Machine Co. computer store, Evanston, Illinois, 1976.

Venture Fund lecturer, Swarthmore College, spring 1977. PHOTO BY ROGER FIELD.

WHERE IT'S AT

Computers are where it's at.

Recently a bank employee was accused of
embezzling a million and a half dollars by clever
computer programming. His programs shifted
funds from hundreds of people's accounts to his
own, but apparently kept things looking innocent
by clever programming tricks. According to the
papers, the program kept up appearances by
redepositing the stolen amount in each account just
as interest payments were about to be calculated,
then withdrawing it again just after. ("Chief
Teller Is Accused of Theft of $1.5 Million at a Bank
Here." New York Times, 23 March 73, p. 1.)

The alleged embezzlement was discovered, not by
bank audit, but by records found on the premises
of a raided bookmaker.

In a recent scandal that has rocked the
insurance world, an insurance company appears
to have generated thousands of fictitious customers
and accounts by computer, then bilked other
insurance companies-- those who re-insured the
original fictitious policies-- by fictitious claims

- on the fictitious misfortunes of the fictitious
policy-holders.

In April of 1973, according to the Chicago
radio, a burglary ring had a "computerized" list
of & thousand prospective victims.

There have been instances where dishonest
university students, nevertheless able programmers,
were able to change their course grades, stored
on a cergral university computer.

It is not unheard of for ace programmers to
create grand incomprehensible systems that run
whole companies, systems they can personally play
like a piano, and then blackmail their firms.

A friend of a friend of the author is an ace
programmer at the Pentagon, supposedly a private
supervising colonels. On days he is mad at his
boss, he says, the army cannot find out its strength
within 300,000 men. Or three million if he so

chooses.

This awkward state of affairs, obvieusly
spanning both the American continent and most
realms of endeavor, has come about for various
reasons.

First, the climate of uncomprehension leads
men in management to treat computer matters as
"mere technicalities"-~ a myth as sinister as the
public notion that computers are "scientific"--
and abandon the kind of scrutiny they sensibly
apply to any other company activities.

Second, most of today's computer systems are
inherently leaky and insecure-- and likely to stay
that way awhile. Getting things to work on them
involves giving people extraordinary and invisible
powers. (Eventually this will change, but watch
out for the meantime.)

The obvious consequence is simply for the
computer people to be allowed to take over
altogether. It may indeed be that computer people
~- the more well-informed and visionary ones,
anyway-- can see the farthest, and appreciate
most deeply the better ways things can go, and
the steps that have to be taken to get there. (And
Boards of Managers can at least be partially assured
that hanky-panky at the lower levels will be
prevented, if men in charge know where the bodies
are buried.)

That seems to be how it's going. Examples:

The president of Dartmouth College, John
Kemeny, is a respected computerman and a devel-
oper of one of the important computing languages,
BASIC (see p. I).

The new president of the Russell Sage Foun-
dation, Hugh Cline, used to teach computing at
Columbia.

It's probably the same in industry. In other
words, more and more, for better and for worse,
things are being run by people who know how to
use computers, and this trend is probably irre-
versible.

In some ways, of course, this is a sinister
portent. In private industry it's not so bad,
since the danger is more of embezzlement and
botch-up than of public menace. But then there's
the problem of the government. The men who
manage the information tools are more and more
in charge of government, too. And if we can have
a Watergate without computers, just wait. (See
"Burning Issues," p. §9)

The way to defend ourselves against computer
people is to become computer people ourselves.
Which of course is the point. We must all become
computer people, at least to the extent that we have
already become Automobile People and Camera
People-~ that is, informed enough to tell when one
goes by or when someone points one at you.

MANY MANSIONS

The future is going to be full of computers,
for good or ill. Many computer systems are being
prepared by a variety of lunatics, idealists and
dreamers, as well as profit-hungry companies and
unimaginative clods, all for the benefit of mankind.
Which ones will work and which ones we will like is
another matter. The grand and dreamy ones bid fair
to reorganize drastically the lives of mankind.

For instance, Doug Engelbart at Stanford
Research Institute has a beautiful system, called NLS,
that will allow us to use computers as a generalized
postoffice and publication system. From your com-
puter terminal you just sign onto Engelbart's System,
and you're at once in touch with lots of writings by
other subscribers, which you may call to your
screen and write replies to.

(These grander and dreamier applications are
discussed on the other side of this book.)

But the plain computer visions are grand
enough.

The great world of time-sharing, for instance.
("Time-sharing" means that the computer's time is
shared by a variety of users simultaneously. See
p. 15.) If you have an account on a time-sharing
computer, you can sign on from your terminal
(see p. [*1) over any telephone, no matter where
you are, and at once do anything that particular
computer allows-- calling up programs in a variety
of computer languages, dipping into data on a
variety of subjects as easily as one now consults
a chart.

For instance, at Dartmouth College—- where
time-sharing is perhaps farthest advanced as a
way of life-- the user (any Dartmouth student, for
instance) can just sit down at a terminal and write
& simple program (in Dartmouth's BASIC language,
for instance) to analyze census data. Since Dart-
mouth has a complete file on its time-sharing system
of the detailed sample from the 1970 census, the
program can buzz through that and report almost
immediately the numbers of divorced Aleuts or
boy millionaires in the sample, or (more signifi-
cantly) the relative incomes of different ethnic
groups when categorized according to the ques-
tioner's interests.

But simple time-sharing is only the beginning.
Networks of computers are now coming into being.
Most significant of these is the ARPANET (financed
by ARPA, the Defense Department's Advanced
Research Projects Agency, it is nonetheless non-
military in character). Dozens of large time-sharing
computers around the country are being tied into the
Arpanet, and a user of any of these can reach dir-
ectly into the other computers of the network--
using their programs, data or other facilities.
Arpanet enthusiasts see this as the wave of the
future.

MINI MANSIONS

But while computers and their combinations
grow bigger and bigger, they also grow smaller
and smaller. A complete computer the size of an
Ored"tookie is now availabie, guaranteed for
twentyfive years (and very expensive). But its
actual heart, the Intel microprocessor, is only
sixty bucks now, and just wait (see Microprocessors,
p.4Y). By 1880 there should be as many pro-
grammed and programmable objects in your house
as you now have TVs, radlos and typewriters;
that's a conservative estimate. But just what these
devices will all be 'doing-- ah, there's the question
that has many people talking to themselves.

OTHER COMING THINGS?

There are a lot of tall stories about what
computers will do for the world. Among the most
threatening, I think, are glowing reports of
"scientific" politics (don't you believe it). We
hear how computers will bring "science" to govern-
ment, helping, for example, to redraw the lines of
election districts. (See Cybercrud, p. %)

Then you may alsc have heard that computers
are going to be our new mentors and companions,
tutoring us, chatting with us and perhaps lulling us
to sleep-- like Hal in 2001. Worried? Good.

(See "The God-Builders," flip side.) (». bh "L)

4D

CHUTZPAR DEPACTMET

A college student broke through the security of the
Pacific Telephone computer system from a terminal and,
according to Computerworld (6 June 73), stole over a
million: dollars worth of equipment by ordering it
delivered to him! (Penthouse, December 73, claims he

was in highschool and it was only nine hundred thousand,

but you get the idea.)

After serving a few weeks in jail, he has formed
his own computer-security consulting company .

More power to him.

———y

P

The new breed has got to be watched.

This is the urgency of this book. Remember
that the man who writes the payroll program can
write himself some pretty amazing checks-- perhaps
to be mailed out to Switzerland, next year.

From here on it's computer politics, computer
dirty tricks, computer wonderlands, computer
everything.

For anyone concerned to be where it's at,
then, this book will provide a few suggestions.
Now is the time you either know or you don't.

Enough power talk. Knowledge is power.
Here you go. Dig in.

LESSON 1:
GETTING THINGS STRAIGHT

The greatest hurdle for the beginner (or
"layman") is making an effort to grasp particulars
of that which he hears about.

A. WHAT IS ITS NAME? Every system or
proposal or project has a name of some sort. Make
an effort to learn it, or you're stuck trying to refer
to "that computerish thing."

(And don't be a snob about acronyms, those
all-cap names and terms sprung from the foreheads
of other words, like ILLIAC and PLATO and CAI.
There's a need for them. Short words are too
general to use for names, and long phrases are
too unwieldy.)

B. IN WHAT PARTICULAR WAY DOES IT
EMPLOY THE COMPUTER? For record-keeping?
For looking stuff up quickly or fancily? For
searching out combinations? For making up combi-
nations and testing their properties? For enacting
complex phenomena? As automatic typewriters?

To play music, or just to store the written notes?

1t is hoped that you will become sensitive
to these distinctions, and be able to understand and
remember them after somebody explains them.

Otherwise you're stuck just referring to
"that computer business,™" and you're in with the
rest of the sheep.

(I\ctaeﬂ\“) —-)

People ask me often where they can learn
about "science," As in all flelds, maga-
zines are usually the best sources of
general orientation.

Science Digest is kind of helpful for a start,

ASPECTS OF THIS BoeK

The explanations-- not yet fully debugged-- are
intended for anybody. The listings of expensive products
and services are intended not only as corroborative detail,
for a general sense of what's available, but also for
business people who might find them helpful, for affluent
individuals and clubs who want to try their hand, and
finally as a box score of how the prices are coming down.
Because we are all going to be able to afford these things

although unfortunately they print summaries pretty soon.

of every fool study that generalizes to the

hearts of all humanity from two dozen lowa

State freshmen. ¢25.000 (P'Dl’-?)
Scientific American is the favorite. Some stuff i']:i::f::"] . ' ’ & LL

is hard to read but some,isn't; the pic-

tures and diagrams are terrific. cO M P

)’Igooo (roe-g) U

Science & Technology magazine seems to me Ifﬂ-'c‘[:ﬁad i,

one of the better ones—- breezy, informa- e

tive, not trivial.

Science magazine is read by most actual scien-

tists, and if you have a lively curiosity
and can guess at the meanings'of words,
will tell you an incredible amount. (This
is a main source for the science articles
in the New York Times, which in turn...)
Their articles on polities of science, and
the future, are very interesting, important,
and depressing. You have to join Am. Assn.
for the Advancement of Science, Washington,
D.C.

ya

Daniel S. Greenberg's Science and Government
Report (sorry-- $35 a year) is what really
tells it. Greenberg is the man who knows,
both what is shaping up in science and
the insane government#l confusions and
floundering responses and grandstanding
and pork-barrel initiatives. ..

Greenberg is, incidentally, one of
the finest writers of our time and a great

£5,000 (7P-ge) (Bt
¥3000 ,

17160

wristwaTeh - sine
Ehops, even Astey ?

65 file

This diagram shows the amazing and unique way prices
drop in the computer field. The prices shown are for the first
minicomputer, the PDP-5 (and its hugely popular offspring, the
PDP-8); but the principle has held throughout the field, and the
downward trend will probably accelerate due to the new big
integrated circuits.

Another example: an IBM 7090, a very decent million-dollar
computer in 1960, was put up for sale at a modish Parke-Bernet
"used computer auction" in 1970. If I remember aright, they
could not get a $1000 bid, because today's machines are so much
smaller, faster and more dependable.

THE AMAZING TREND

humorist. s YQ'Q
Science and Government Report,
Kalorama Station (really?), Box 21123, Whee!
Washington, D.C. 20009. E— here e (j’ v
This is the wall that the handwriting
is on. YYn o
WHERE IT'S AT, U.S. &
/ . EVROPE USSR —>
&fi f" rammery
oo C’h\rv reuu—
* Darfmouft,
Secho) Data
(€N JU\ iv ~ \
S‘H‘Lakg(‘; “Univae .\6\’1} e BO STDN Aﬁgk
* OOt “Chi
Evang'q 5 va fa) . 0 om
st G VA Gt
U iseouss . LWVMB (Fon of m)
e IT. {Pepe
¢ C““r’," Inaa(Dewver «GE T tl)vctﬁdsc-.« Tous (sbovafories
« Sobtecl (’olal [uhl[.axhu Lalaniar?
. ‘foug-]..’d, ' ‘t‘:ﬂg‘: «Geuera) Twﬂ0
ﬂwu.(o * Case- Wedem Re: 'H:,::\raackf wa\gu. e o
" hca oL ey * wbyid cvemtibre Couter
'gxi'::l; M Rescl . ehe g(:l“\u:c.xu Si;n"?z OL‘:S i
* Stay esewel Tnit : ENGEU . . 'Y .
BYE [ol et M OEBIET Oty (Oriamy) S oo VEM Hodso:
Adtiicinl Belisdice Labowtor FeATe SYsTEM K o't“&urm
Sopyes AT a..ﬂ bl ¥ ant, kil Plains
c x4 h‘r‘)‘nn\ Latontu m&”&ﬂ#‘l‘.‘.‘&&?{, /Oowoh"f IMka v
* Varieos AEM places (g,:),m LesGiter..) (Rrmonly
o Livernere [abs 4 p Bec caBs, K3 G\ﬁ& Breok
+ Wlere o ulfeek exadlty 2 Wlira (msﬂm)‘)
T 1’ i R,
* Raed Corp. Nt*lqu (Phones).)
* 55¢ (som of Rand &-¢55.T0R S, PHILLY:
 Xevex Data $1;‘}eu5 (Sg‘ l'loove M.oa[o

« Veetor Gewevaef

LA AREA

lele

Resch. Axsach
'M LY ila. ;:.eq,;k deutw

Tl Gompanies # /\Rm N€V M. AREA
O e e oy
* U. Texay B::‘dusm”*h it
A Cm fav\ s Map '-&f\eﬂi"#':'g’cr ™ ol
:howu ecrej l°¢&‘fteq5 ok i Ctr. ¢Sn
of Some w)' hard \ s] s b st (o

placés fhal dpw\(ur t Conversatioy

Ty [brew £y

te.
18Mm Feleva| Syshess Drvisien,

WHERE IT'S AT
IN THIS BoOK

2 INTRO

4 "Where It's At"

6 Sources of Information

8 CYBERCRUD

9 THE MYTH OF THE COMPUTER
0 The Power and the Glory
1 THE DEEP DARK SECRET
(Computer Basics Reduced
to One Easy Page)

12 THE NEW ERA

13 INTERACTIVE SYSTEMS

14 TERMINALS

15 COMPUTER LANGUAGLES: Prelude
16 . 1. BASIC

18 2. TRAC® Language

22 3. APL

26 DATA STRUCTURES

27 Binary Patterns

30 COMPUTER LANGUAGES: Postscript
32 ROCK BOTTOM: Inner Languages
of Computers;
Computer Architecture
34 BUCKY'S WRISTWATCH, a sample
machine-language program
35 The Assembler -
36 Your Basic Computer Structure:
THE MINICOMPUTER
38 BIG COMPUTERS
40 GREAT COMPUTERS: Sketches
of Some Specific Machines
43 List of Mini Makers
44 MICROPROCESSORS
(The New Third Kind
of Computer)
45 ADVANCED PROGRAMS
45 OPERATING SYSTEMS
45 TIME-SHARING
46 COMPUTER PEOPLE

47 Program Negotiation

47 Suggestions for Writers

48 Fun and Games

50 How Computer Stuff is
Bought and Sold

51 How Computer Companies are
Financed, Sometimes

52 IBM

57 Digital Equipment Corporation

57 Peripherals for Your Mini

58 SIMULATION

58 OPERATIONS RESEARCH

58 GREAT ISSUES

58 MILITARY USES OF COMPUTERS
59 The ABM System

60 DNA

62 DAMN THAT COMPUTER!

64 STUFF YOU MAY RUN INTO

68 THE CLUB OF ROME

oD

THE BUCK STOPS HERE

Everywhere in the world people can pretend
that your ignorance, or position, or credentials, or
poverty, or general unworthiness, are the reasons
you are being pushed around or made to feel small.
And because you can't tell, you have to take it.

And of course we can do the same thing with
computers. Yes, we can do it in spades. (See
"Cybercrud," p. 8.) But many of us do not want to.
There has to be a better way. There has to be a
better world.

YoUR,
INRRMATION SoUREES

There are several major places you get infor-
mation in the computer field: friends, magazines,

bingo cards, conferences and conference proceedings.

FRIENDS.

Friends we can't help with. But you might
make some at conferences. Or join a computer club?

MAGAZINES.

The principal magazines are (first few listed
roughly by degree of general interest):

Datamation. $15 a year or free. The main
computer magazine, a breezy, clever
monthly. Lots of ads, interesting arti-
cles the layman can read with not much
effort. Twits IBM.

Subscriptions are $15 if you're
not a computer person, free if you are.
Datamation, 35 Mason St., Greenwich
CT 06830.

Computer Decisions. Some $7 a year or free.
Some nice light articles, as well as
helpful review articles on different
subjects. Avoids technicalities.
Computer Decisions, 50 Essex St.,
Roselle Park NJ 07662.

Computers and Automation. Avoids techni-
calities but quite a bit of social-interest
stuff. Nobody gets it free; something
like $7.50 a year. Berkeley Enter-
prises, Inc., 815 Washington St.,
Newtonville, Mass. 02160.

Computerworld (actually a weekly tabloid
paper). Not free: $9 a year. More
up-to-the-minute than most people
have time to be. Computerworld,
Circ. Dept., 797 Washington St.,
Newton, Mass. 02160,

Computing Surveys. Excellent, clearly
written introductory articles on a

variety of subjects. Any serious
beginner should definitely subscribe
to Computing Surveys. (See ACM,
below.)

Communications of the ACM. High-class
. v journal about theoretical matters and
<d C&va\ events on the intellectual side of the
field. (See ACM, below.)

Computer Design. $18/yr. or free. Concen-
trates on parts for computers, but also
tells technical details of new computers
and peripherals. Computer Design,
Circulation Dept., P.O. Box A,
Winchester, Mass. 01890.

Data Processing magazine. Oriented to
conventional business applications of
computers. $10. North American
Publishing Co., 134 N. 13th St.,
Philadelphia, Pa. 19107.

Computer. (Formerly IEEE Computer Group
News.) $12/yr. Thoughtful, clearly
written articles on high-level topics.
Quite a bit on Artificial Intelligence
(see flip side). IEEE Computer Society,
16400 Ventura Blvd., Encino CA 91316.

Here are some other magazines that may
interest you. No particular order.

PCC. Delightful educational/counterculture
tabloid emphasizing computer games
and fun. Oriented to BASIC language.
$4/yr. from People's Computer Com-
pany, P.O. Box 310, Menlo Park,

CA 84025.

Computing Reviews. Prints reviews, by
individuals in the field, of most of the
serious computer articles. Useful, but
subject to individual biases and gaps.
(See ACM, below.)

The New Educational Technology . $5/yr.
Presumably concentrates on activities
of its publisher: General Turtle, Inc.,
545 Technology Square, Cambridge,
MA 02139: wonderful computer toys for
schools and the well-heeled.

The Honeywell Computer Journal. Something
like $10 a year. Honeywell Information
Systems, Inc., Phoenix, Arizona.
Showcase magazine of miscellaneous
content; readable, nicely edited. Has
unusual practice of including microfiche
(microfilm card) of entire issue in a
pocket.

IBM Systems Journal. Showcase technical
journal of miscellaneous content,
especially arcana about IBM products.
$5/yr. IBM, Armonk, NY 10504.

IBM Journal of Research and Development.
Showcase technical journal of miscel-
laneous content. $7.50/year. IBM,
Armonk, NY 10504.

. Journal of the ACM. A highly technical, math-
(‘J’kCM") oriented journal. Heavy on graph theory
and pattern recognition. (See ACM,

below.)

Digital Design. $15 or free. About computer
parts and designs. Digital Design,
Circ. Dept., 167 Corey Road, Brookline,
Mass. 02146,

Infosystems. Aspiring mag. $20 or free.
Hitchcock Publicatons, P.O. Box 3007,
Wheaton, I11. 60187,

Think. This is the IBM house organ.
Presumably free to IBM customers
or prospects. IBM, Armonk, NY 10504.

There are also expensive (snob?) magazines,
bought by executives.

Computer Age. $95/yr. EDP News Services
Inc., 514 10th St. N.W., Washington
DC 20004.

Computer Digest. $36/yr. Information Group,
1309 Cherry St., Philadelphia PA 19107.

Data Processing Digest. $51/yr. 6820
la Tijera Blvd., Los Angeles CA 90045.

Hey now, here's a magazine called Computopia. Only $15 a year. Unfortunately in Japanese.
Computer Age Co. Ltd., Kasumigaseki Bldg., Box 122, Chiyoda-Ku, Tokyo, Japan.

"(oMPURER. TOfs” — & WARNING-

Jone
(Good RooKS & RRTICLES
FoR BEGINNERS

The best review of what's happening lately, by
none other than Mr. Whole Earth Catalog
himself: Stewart Brand, "Spacewar:
Fanatic Life and Symbolic Death among
the Computer Bums." Rolling Stone, 2
December 72, 50-56. He visited the most
hotshot places and reports especially on
the fun-and-games side of things.

Gilbert Burck and the Editors of Fortune, The
Computer Age. Harper and Row. Ignore
the ridiculous full title, The Computer Age
and Its Potential for Management; this book
has nothing to do with management, but is
a nice general orientation to the field.

Thomas H. Crowley, Understanding Computers.
McGraw-Hill. This is the most readable and
straightforward introduction to the techni-
calities around.

Jeremy Bernstein, The Analytical Engine. Random
House, 1964. History of computers, well told,
and the way things looked in 1964, which
wasn't really very different.

Donald E. Knuth, The Art of Programming. (7 vols.)
A monumental series, excellently written and
widely praised, for anyone who wants to dig
in and be a serious programmer. Three of
the seven volumes are out so far, at about
twenty bucks apiece. Vol. 1: Fundamental
Algorithms. Vol. 2: Seminumerical
Algorithms. Vol. 3: Sorting and Searching.
Addison-Wesley .

BUMMERS

This is perhaps a minority view, but I think
any introduction to computers which makes them
seem intrinsically mathematical is misleading.
Historically they began as mathematical, but now
this is simply the wrong way to think about them.
Same goes for emphasizing business uses as if
that were all.

We will not name here any of the various
disagreeable pamphlets and books which stress
these aspects and don't make things very clear.

[SABOUT FREE SUBSCRIPTIONS. Many of the
magazines are free to "qualified" readers, usually
those willing to state on a signed form that they
influence the purchase of computers, computer ser-
vices, punch cards, or the like. (They ask other
questions on the form, but whether you influence
purchase is usually what decides whether they
send you the magazine.) It is also helpful to have
a good-sounding title or company affiliation.

BINGO CARDS.

These are little postcards you find in all the
magazines except the ACM and company ones. Fill
in your name and an attractive title ("Systems
Consultant" or "consultant” is good-- after all,
someday someone may ask your advice) and circle
the numbers corresponding to the ads that entice
you. You'll be flooded with interesting, expensively
printed, colorful, educational material on different
people's computers and accessories. And note that
senders don't lose: any company wants its products
known.

However, a postoffice box is good, as it helps
to avoid calls at home from salesmen, wasting their
time as much as yours. If you are in a rural-type
area where you can assume & company name with no
legal difficulties, so much the better.

POPULAR. Computels

That the field has not been popularized by its
better writers may simply come from an honest doub.
that ordinary people can understand computers.

I dispute that. Through magazines, millions

of Americans have learned about photography. Through
the popular science-and-mechanics type magazines,

and more recently the electronics magazines, various
other technical subjects have become widely understood.

A number of inexpensive gadgets purport to
teach you computer principles. Many people have been
disappointed, or worse, made to feel stupid, when they
learn nothing from these. Actually the best these things
really can do is give you an idea of what can be done
with combinations of switches. From that to learning

So far nobody has opened up computers. This
is a first attempt. If this book won't do it another one

what computer people really think about is a long, long will.
way.
And you better believe that Popular Computers
J magazine is not very far away. Soon a fully-loaded
J minicomputer will cost less than the best hi-fi sets.

In a couple of years, thousands of individuals will
own computers, and millions more will want to. Look
out, here we go.

Woops, here it is. Popular Computing, $15 a year
($12 if prepaid), Box 272, Calabasas, CA 91302.

THE MAIN COMPUTER ORGANIZATIONS

ACM, the Association for Computing Machinery .
This is the main computer professional
society; the title only has meaning histor-
ically, as many members are concerned not
with machinery itself, but with software,
languages, theories and so on.

If you have any plans to stick with
the subject, membership in the Association
for Computing Machinery is highly recom-
mended. ACM calls itself "The Society of
the Computing Community." Thus it properly
embraces both professionals and fans.

Dues for official students are $8 a year,
$35 for others, which includes a subscription
to Communications of the ACM, the official
mag. Their address for memberships and
magazines is ACM, BR.O. Box 12105,

Church St. Station, New York, NY 10249,
(The actual ACM HQ is at 1133 Ave. of the
Americas, New York, N.Y. 10036.)

They have stacked the deck so that
if you want to subscribe to any ACM maga-
zines you'd better join anyway. Here are
the year prices:

Member Non-Member
Communications of the ACM free $35
Computing Surveys $7 $25
Computing Reviews $12.50 $35
Journal of the ACM $7 $30

The one drawback to joining the ACM
is all the doggoned mailing lists it gets you
on. It's unclear whether there's anything
you can do to prevent this, but there oughta
be.

SIGs and SICs. For ACM members
with special interests (and we all have them),
the ACM contains subdivisions-- clubs within
the club, of people who keep in touch to
share their interests. These are called SICs
(Special Interest Committees) and SIGs
(Special Interest Groups). There are such
clubs-- SICs and SIGs-- in numerous areas,
including Programming Languages, Computer
Usage in Education, etc. Encouraging these
subinterests to stay within ACM saves a lot
of trouble for everybody and keeps ACM the
central society.

AFIPS.

AFIPS is the UN of computing. They
sponsored the Joints, and now sponsor the
NCC. Just as individuals can't join the UN,
they can't join AFIPS, which stands for
American Federation of Information Proces-
sing Societies. Depending on your special
interests, though, you can join a member
society .

The constituent societies of AFIPS are,
as of June 1973: (If any turn you on, write
AFIPS for addresses: AFIPS, 210 Summit Ave.,
Montvale NJ 07645.)

¥ ACM: the Association for Computing Machinery .

IEEE, the Institute of Electrical and Electronics
Engineers. This is the professional society
of electronics guys.

Simulation Councils. This is the professional
society for those interested in Simulation
(see p.54).

Association for Computational Linguistics. (Where
language and computer types gather.)

American Association of Aeronautics and
Astronautics.

American Statistical Association.

Instrument Society of America.

Society for Information Display. (See flip side.)

American Institute of Certified Public Accountants.

American Society for Information Science. (This
group is mainly for electronified librarians
and information retrieval types-- see
flip side.)

Society for Industrial and Applied Mathematics.

Special Libraries Association.

Association for Educational Data Systems.

IFIP. This is the international computer society.
Like AFIPS, its members are societies, so
joining ACM makes you an IFIP participant.

IFIP holds conferences around the
world. Fun. Expense.

THE SPRING JONT

1s No MowE.

CONFERENCES.

Conferences in any field are exciting, at least
till you reach a certain degree of boredom with the
field. Computer conferences have their own heady
atmosphere, compounded of a sense of elitism, of
being in the witches' cauldron, and the sure sense
of the impact everything you see will have as it all
grows and grows. Plus you get to look at gadgets.

Usually to go for one day doesn't cost much,
and at the bigger ones you get lots of free literature,
have salesmen explain their things to you, see
movies, hear fascinating (sometimes) speakers.

THE JOINTS! The principal computer confer-
ences have always been the Spring Joint
Computer Conference, held in an
Eastern city in May, and the Fall Joint
Computer Conference, held in a Western
city in November (the infamous Spring

Joint and Fall Joint, or SJCC and FICC).

In 1973, because of poor business the
previous year, the two were collapsed
into one National Computer Conference
(NCC) in June (Universal Joint?) The
Joints have always been sponsored by
AFIPS (see below). The National
Computer Conference will henceforth
be annual, at least for a while.

The cost of attending is high--
while it's just a couple of dollars to
look at the exhibits, this rises to
perhaps fifteen dollars to go to the day's
technical sessions or fifty for the week
(not counting lodging and eats)-- but
it's very much worth it. The lower age
limit for attendees is something like
twelve, unfortunately for those
with interested children.

Other important conferences: the annual ACM
conference in the summer; BEMA
(Business Equipment Mfrs. Assn.)
in the fall and spring (no theory, but
lots of gadgets); and other conferencs
on special subjects, held all the time
all over. Lists of conferences and
their whereabouts are in most of the
magazines; Communications of the ACM

and Computer Design have the biggest
lists.

.)
CONFERENCE PROCEEDINGS . (%‘}fbf_;,!&% e es,
" fproc . nEe '1'3.')
As you may know, conferences largely con-
sist of separate "sessions" in which different people
talk on specific topics, usuaily reading out loud from
their notes and showing slides.

Conference proceedings are books which
result from conferences. Supposedly they contain
what each guy said; in practice people say one thing
and publish another, more formal than the actual
presentation.

This leads to a curious phenomenon at the
main computer conferences (SJCC,FJCC, ACM and
now NCC). When you register they give you a book
(you're actually paying perhaps $15 for it), contain-
ing all the papers that are about to be given, nicely
tricked out by their authors. If you rush to a corner
and look at the book it may change your notion of
which sessions to go to.

Anyway, the resulting volumes of conference
proceedings are a treasure trove of interesting papers
on an immense variety of computerish and not-so-
computerish subjects. Great for browsing.

Expensive but wonderful. (Horrible when you're
moving, though, as they are big and heavy.)

JOINT PROCEEDINGS. Proceedings for the
Spring Joint and Fall Joint, from the
fifties to 1972, are available from AFIPS
Press, as are proceedings of the 1973
NCC. (AFIPS Press, 210 Summit Avenue,
Montvale NJ 07645.) They cost $20-26
each after the conference is over; less
in mierofilm. (At the Joint Conferences,
AFIPS Press often gives discounts, at -
their booth, on back Joint proceedings.)

[=>If you want to spend money to
learn about the field, Proceedings of
the Joint Conferences are a fine buy.

Back ACM Proceedings. From the ACM.

Other Proceedings. Often sold at counters at
conferences. Or available from various
publishers. Join the ACM and you'll
find out soon enough.

TRY TO GET TO THE NATIONAL JOINT. Just as
every Muslim should go to Mecca, every
computer fan should go to a National Joint
(National Computer Conference, or NCC).
The next two are (check the magazines):

May 1874, Chicago
May 1975 ~Sen-Erancisea_ A NAHEIM,

NO QUALIFICATIONS ARE NEEDED. Think of it
as a circus for 'smart alecks, or, if you
prefer, a Deep Educational Experience.

WHKT HATPENS I YoU TAKE CoMpUTER CoUlsES?

There is a lot of talk about "best" ways of teaching about computers, but in most places
the actual alternatives open to those who want to learn are fairly dismal.

Universities. Universities and colleges tend to teach computing with a mathematical
emphasis at the start. Indeed, most seem to require that to get into the introductory computer
course, you must have had higher math (at least calculus, sometimes matrix algebra as well).
This is preposterous, like requiring an engineering degree to drive a car. (Gradeschool kids
can learn to program with no prerequisites.)

L2 It seems to be to cut down enrollment, since they're not set up to deal with all those
people who want to learn about computers. (And why not?) Also it's a status thing; as if
this restriction somehow should keep enrollment to students with "logical minds," whatever
those are, or "mathematical sophistication,"” as if that were relevant.

"Computer schools," community and commercial colleges, on the other hand, tend to
prepare students only for the most humdrum business applications-- keypunching (which is
rapidly becoming obsolete), and programming in the COBOL language on IBM business systems.
This gets you no closer to the more exciting applications of computers than you were originally .

Some experimental trends are more encouraging. Some colleges, for instance, offer
"computer appreciation courses," with a wider introduction to what's available and more varied
programming intended to serve as an introduction to this wider horizon.

Highschool courses seem to be cutting through the junk and offering students access to
minicomputers with quickie languages, usually BASIC. Both Digital Equipment Corp. and
Hewlett-Packard seem to be making inroads here.

Kiddie setups, rumored to exist in Boston and San Francisco, are geared to letting
grade-school children see and play with computers. Also one company (General Turtle, see
p.57) is selling computer toys intended to encourage actual programming by children.

CYBERCEWD

A number of people have gotten mad at me
for coining the term "cybercrud," which I define
as "putting things over on people using computers."
But as long as it goes on we'll need the word. At
every corner of our society, people are issuing
pronouncements and making other people do things
and saying it's because of the computer. The
function of cybercrud is thus to confuse, intimi-
date or pressure. We have all got to get wise to
this if it is going to be curtailed.

Cybercrud takes numerous forms. All of
them, however, share the patina of "science" that
computers have for the layman.

la) COMPUTER AS MAGIC WORD

The most delicate, and seemingly innocent,
technique is the practice of naming things so as
spuriously to suggest that they involve computers,
Thus there is a manufacturer of pot-pipes with
"Data"” in its name, and apparently a pornography
house with a "Cyber-".

1b) COMPUTER AS MAGIC INGREDIENT

The above seems silly, but it is no less silly
than talking about "computer predictions” and
"computer studies” of things. The mere fact that
& computer is involved in something has no bearing
on its character or validity. The way things are
done with computers affects their character and
validity, just like the way things are done without
computers. (Indeed, merely using a computer
often has no bearing on the way things are done.)

This same technique is easily magnified to
suggest, not merely that something involves
computers, but is wholly done by computers. The
word "computerize” performs this fatal function.
When used specifically, as in computerize the
billing operation, it can be fairly clear; but make
it vague, as in computerize the office, and it can
mean anything.

"Fully computerize” is worse. Thus we hear
about a "fully computerized" print shop, which
turns out to be one whose computers do the type-
setting; but they could also run the presses, pay
the bills and work the coffee machine. For prac-
tical purposes, there is no such thing as "fully”
computerized. There is always one more thing
computers could do.

|

4
A
R

RN

Pt

TR

BY THE AID OF THE MIRROR SHE PUT ON THE HEAD

2) WHITE LIES: THE COMPUTER MADE ME DO IT

Next come all the leetle white lies about how
such-and-such is the computer's fault and not
your decision. Thus the computer is made a
General Scapegoat at the same time it's covering up
for what somebody wants to do anyway.

"It has to be this way."

"There's nothing we can do; this is all
handled by computer."

“"The computer will not allow this."

"The computer won't let us."

The translation is, of course, THE STINKY LOUSY
PROGRAM DOES NOT PERMIT IT. Which means in
turn: WE DO NOT CHOOSE TO PROVIDE, IN OUR
PROGRAMS AND EQUIPMENT, ANY ALTERNATIVES.

Now, it is often the case that good and
sufficient reason exists for the way things are done.
But it is also often the case that companies and the
public are inconvenienced, or worse, by decisions
the computer people make and then hide with their
claim of technical necessity. (See p. '-{L : Dealing
with computer people.)

3) YAGOTTAS: COMPUTER AS COERCER

More aggressively, cybercrud is a technique
for making people do what you want. "The com-
puter requires it," you say, and so people can be

made to hand over personal information, secretaries

can be intimidated into scouring the files, payment
schedules can be artificially enforced.

THE GENERAL STATUS TRICK

Status tricks, combining the putdown and
the self-boost, date back to times immemorial.
But today they take new forms. The biggest trick
is to elevate yourself and demean the listener at
the same time, or, more generally, the technique
is making people feel stupid while acting like a
big cheese. Thus someoneone might say,

"People must begin to get used to the objec-
tive scientific ways of doing things
that computers now make necessary."

But the translation seems to be:

"People must get used to the inflexible,
badly thought out, inconvenient and
unkind systems that I and other
self-righteous individuals and com-
panies are inflicting on the world."

YOU DON'T ALWAYS GOTTA

The uninfermed are bulldozed, and even
the informed are pressured, by the foolish myths
of the clever, implacable and scientific computer
to which they must adapt. People are told they
have to "relate to the computer.” But actually
they are being made to relate to systems humans
have designed around it, in much the same way
a sword dance is designed around the sword.

When establishment computer people say
that the computer requires you to be systematic,
they generally mean you have to learn their system.
But anyone who tells you a method "has to be
changed for the computer" is usually fibbing.

He prefers to change the method for the computer.
The reasons may be bad or good. Often the
computer salesman or indoctrinator will present
as "scientific” techniques which were doped out
or whomped up by a couple of guys in the back
room.

Here is an example, as told to me. A friend
of mine worked in a dress factory where they had

a perfectly good system for billing and bookkeeping.

Customers were listed by name and kept in alpha-
betical order. The fast pace of the garment indus-
try meant that companies often changed names, and
so various companies had a number of different
names in the file. This bothered nobody because
the people understood the system.

Then management bought a small computer,
never mind what brand, and hired a couple of guys
to come in and put the bookkeeping system on it.

Still okay. Indeed, small programming firms
can sometimes do this sort of thing very well,
because they can work flexibly with the people
and don't necessarily feel committed to making it
work a certain way .

Well, this was a nice instance where the
existing system could have been exactly trans-
ferred to the computer. The fact that some custom-
ers had several names would certainly have been
no problem; a program could have been written
that allowed users to type any acceptable customer
name, causing the computer to look up the correct
account (and if desired, print its usual name and
ask for verification).

But no. The guys did not answer employees’
questions comprehensibly, nor did they want sug-
gestions. They immediately decreed that since
computers only worked with numbers (a fib, but
& convenience to them), every customer would
thenceforth have to be referred to by number,

After that the firm had nothing but trouble,
through confusion over the multiple names, and
my friend predicted that this would destroy the
company. I haven't heard the outcome.

This story is not necessarily very inter-
esting; it merely happened. It's not a made-up
example.

Moral: until we overthrow the myth that
people always have to adapt to computers, rather
than the other way around, things will never go
right. Adaptations should take place on both
sides, darn it.

EVERYBODY DOES IT

Cybercrud is by no means the province of
computer people alone. Business manipulators
and bureaucrats have quickly learned the tricks.
Companies do it to the public. The press, indeed,
contributes (see Suggestions for Writers and
Spokesmen, p.47). But the computer people are
best at it because they have more technicalities
to shuffle around magically; they can put anybody
down.

Now, computer people do deserve respect.
So many things that people do with computers are
hard. It can be understood that they want to be
appreciated, and if not for the particulars, for
the machismo (machinismo?) of coping with intri-
cacy . But that is no excuse for keeping others in
controlled ignorance. No man has a right to be
proud that he is preserving and manipulating
the ignorance of others.

"If it can't be done in COBOL,
I just tell people it can't be done by computer.
It saves a lot of trouble."”

Attributed to somebody in Rochester.
(See COBOL, p.J| .)

In the movie "Fail-Safe," they showed you
lots of fake tape drives with the reels constantly
turning in one direction. This they called a
"computer.” Calling any sinister box "a computer"”
is a widespread trick. Gives people the willies.
Keeps 'em in line.

Pear D“Dﬁslfor.
Your bank
tO providgea

(o] i a co
Pvrlf Servica. mpe VLEN beteey p ooTPUter
) . :

(’ke slip.
rear,
tequires

Imprinte
ih(‘ mm'.‘)fr:nn::“fd::f?k
;:':::, Pleage Start u.:ﬂ
e tately, o Trecom
7 t: a fow of ihesc: d‘

€ cover of your c

al, Te
Ing them
mend ¢y

1f the
re a
Thig Te any questiq
7 NOW orocediirg NS abor ¢

CEFfi . an
cers Will be alad (Yoo}?e of our
. elp you

You can buy little boxes with blinking
lights that do nothing else but blink. They
really put people uptight. "Are you recording
what [say?" people ask. "Is it a computer?"
They'll believe such a box is anything you tell them.

RerSONS FORCTBERCED (AL BAY)

1) to manipulate situations.
2) to control others.
3) to fool.
4) to look like hot stuff.
5) to keep outsiders from seeing through something.
6) to sell something.
7) to put someone down.
8) to conceal.
9) general secretiveness.
10) low expectation of others' mentality.
11) seeking to be the broker and middleman for
all relations with the computer.
12) vagueness sounds profound.
13) you don't have to show what you're not sure of.
14) your public image is monolithic.
15) you really don't know .

BerUriFuL BUNNY BooTiEs

Cybercrud is not aimed only at laymen.
It can work even among insiders.

The operations manager of a national
time-sharing service, for example, was fanatical
about cleanliness. In order to assure a Clean
Computer Room, he said, and hence no dangerous
dust near the tapes or disks, he made a rule
requiring that anyone entering the computer room

Booties were hung outside for those who
had to enter.

"And I had the greatest time making his,"
says his wife, laughing. "With the cutest little
bunny faces on them. The buttons were the
hardest part to get-- you know, the ones with
eyes that roll!" She laughs very hard as she
tells this.

"Of course there was no need for it," he
now chortles, "but it sure kept people out of the

computer room."

(That's applied logic for you.)

" COMPUTERS

AND THEIR PRIESTS

First get it through your head that computers are big,
expensive, fast, dumb adding-machine-typewriters. Then
realize that most of the computer technicians that you're
likely to meet or hire are complicators, not simplifiers.
They're trying to make it look tough. Not easy. They're
building a mystique, a priesthood, their own mumbo-
jumbo ritual to keep you from knowing what they-- and
you-- are doing."

-- Robert Townsend,
Up The Organization (Knopf), p. 36.

"

THE CARGO-(ULT ASPECT

Qutsiders are often prey to cybercrud they
dream up themselves. I once knew a college
registrar’s office where they had been getting
along fine for years with paper forms. The year
before the computer was slated to arrive, they
started using file cards filled out by hand, instead.
Why? "Well, we thought that would make it easier
for the computer. Computers use cards, don't they?"

Note that referring to a computer as if it were
a living creature is not cybercrud; to say that a
program "looks at" a device, "tries to" effect a
procedure, and "goes to sleep," are all colorful
brief ways of describing what really happens.
(See Guidelines for Writers and Spokesmen, p. "I'])

MYT [ECRET LOWERS
EsTHIs AW possesy

Cybercrud is, of course, just one branch of
THE GREAT GAME OF
TECHNOLOGICAL PRETENSE
that has the whole world in its grasp.

”,‘/ah/ womay, 4'/4 -
t% 5 3” is ,,/0 ?ub\}f’ﬁt UAI)
s of Seienel."
Fresy Tesfer

e YT oF e MACHINE:

K DEEP COLTURAL ENGRAM

Public thinking about computers is heavily
tinged by a peculiar image which we may call the
Myth of the Machine. It goes as follows: there is
something called the Machine, which is Taking Over
The World. According to this point of view
The Machine is a relentless, peremptory, repetitive,
invariable, monotonous, inexorable, implacable,
ruthless, inhuman, dehumanizing, impersonal
Juggernaut, brainlessly carrying out repetitive
(and often violent) actions. Symbolic of this
is of course Charlie Chaplin, dodging the relent-
less, repetitive, monotonous, implacable,
dehumanizing gears of a machine he must deal with
in the film Modern Times.

Ordinarily this view of The Machine is
contrasted with an idea of a Warm Human Being,
usually an idealized version of the person thinking
these thoughts.

The Warm
Machine"——~* Human
Being

But consider something. The model often
goes further than this. The Machine is cold, the
Human Being emotional and warm. Yet there is
such a thing as being too emotional and warm.
There is in fact a third type in the schema, the
being who goes too far on the same scale. Strangely,
he has at least three different names, though the
picture of him is abstractly the same:

N =
% - /N N 3
X X X
The Warm "Bum"
Machine Human "Nigger"
Being "Hippie"

Now, "bums." "niggers” and "hippies" are
not real people. The words are derogatory slang
for the destitute, for persons with any African
ancestry , and for people dressing in certain styles.
But the remarkable thing about the slang js that
all three of these derogatory terms seem to have
the same connotation in our culture: someone who
is dirty, lazy and lascivious. In other words,
whatever distinguishes The Machine from the
Warm Human Being is carried too far by the bunch
at the other end.

In other words, this conceptual continuum
is a single, fundamental scale in our culture;
why is unclear. Since most people consider
themselves-- naturally!-- to be in the middle
category, it acts as a sort of reference continuum
of two bad things on either side.

It also has another effect: it supplies a
derogatory way of seeing. On the right-hand side,
it allows many Americans not to see, or to see
only with disgust, the destitute and those with
African ancestry and those dressing in hippie style.
But this book isn't about that.

The left side of the continuum is our present
concern. There, too, people refuse to see. What
people mainly refuse to see is that machines in
general aren't like that, relentless, repemiv;,
monotonous, implacable. dehumanizing. Oh, there
are some machines like that, particularly the
automobile assembly line. But the assembly line
was designed the way it is because it gets the most
work out of people. It gets the work it does out of
people by the way it exerts pressure.

So here we see the same old trick: people
building a system and saying it has to work that way
because it's a machine, rather than because that's
how I designed it.

To make the point clearer, let's consider
some other machines.

The automobile is a machine, but it is hardly
the repetitive, "dehumanized" thing we usually
hear about. It goes uphill, downhill, left and right,
fast and slow. It may be decorated. It is the scene
of many warm human activities. And most impor-
tantly, automobiles are very much the extension of
their owners, exemplifying life-style, personality,
and ideology. Consider the Baja Buggy Volkswagen
and the ostentatious cushy Cadillac. Consider the
dashboard ornament and the bumper sticker.

The Machine, indeed.

The camera is a machine, but one that allows
its user to freeze and preserve the views and images
of the world he wants.

The bicycle is a machine, but one that brings
you into personal and non-polluting contact with
nature, or at least that stylized kind of nature
accessible to bicycle paths.

To sum up, then. The Machine is a myth.
The bad things in our society are the
products of bad systems, bad decisions
and conceivably bad people, in various
combinations. Machines per se are
essentially neutral, though some machines
can be built which are bad indeed,
such as bombs, guns and death-camps.

The myth of The Machine is a curious aspect
of our ideology. Is it especially
American. or world-wide?

If we ignore this myth we can see each possible
machine or system for what it is, and
study how it ties in with human life
for good or ill, fostering or lousing up
such things as the good life, preser-
vation of species, love and self-respect.

THE MYTH
ANY THE [RORSeHACY

"The computer is the ultimate Rorschach
test,” Freed Bales said to me twelve years ago.
Dr. Bales, a Harvard psychologist, was somewhat
perturbed by the papers he was getting in his
seminar on computer modelling in the social
sciences. Somewhat nutty people in the seminar
were writing somewhat nutty papers for him.

And truer words were never spoken. On
this point 1 find Bales has been terribly, terribly
right. The computer is an incredible projective
test: what you see in the computer comes right off
the back wall of your psyche. In over a decade
in the field | have not ceased to marvel at the way
people's personalities entwine with the computer,
each making it his own-- or rejecting it-- in his
own, often unique and peculiar way, deeply re-
flecting his concerns and what is in his heart.
Yes, odd people are attracted to the computer,
and the bonds that hold them are not those of
casual interest.

In fact, people tend to identify with it.

In this light we may consider the often-
heard remarks about computers being rigid,
narrow, and inflexible. This is of course true in
a sense, but the fact that some people stress it
over and over is an important clue to something
about them. My own impression is that the people
who stress this aspect are the comparatively rigid,
narrow and inflexible people.

Other computer experts. no less worthy,
tell us the computer is a supertoy. the grandest
play machine ever to be discovered. These
people tend to be the more outgoing, generous
and playful types.

in a classic study, psychiatrist Bruno
Bettelheim examined a child who thought he was
a machine. who talked in staccato monosyllables,
walked jerkily and decorated the side of his bed
with gears. We will not discuss here the prob-
able origins and cure of this complex; but we
must consider that identifying with machines is
a crucial cultural theme in American society,
an available theme for all of us. And it well may
be that computer people are partaking of this same
self-image: in a more benign form, perhaps, a
shift of gears (as it were) from Bettelheim's
mechanical child, but still on the same track.

Some of the computer high-chool kids ['ve
known, because of their youth, have been even
more up-front about this than adults.

I know one boy, for instance, whose dream
was to put a 33ASR Teletype on wheels under
radio control, and alarm people at the computer
conference by having it roll up to them and clatter
out questions impersonally. (If you knew the kid
-- aloof and haughty-seeming-- you might think
that's how he approaches people in real life.)

I know a high-school boy (not a computer
expert) who programmed a computer to type out
a love story, using the BASIC "print" command,
the only one he knew. He could not bring
himself to write the love story on paper.

The best example I can think of, though,
took place at the kids' booth (see p.47) at a
computer conference. One of the more withdrawn
girls was sitting at an off-line video terminal,
idly typing things onto the screen. When she
had gone a sentence remained. It said:

I love you all, but at a distance.

e

(On the other side of this book, Dream
Machines, we will carry this matter further.
The most exciting things in the computer field
are coming from people trying to realize their
wildest dreams by computer: artificial intel-
ligence, computer music, computer picture-
making and so on.)

10

THE PoWER kD THE

Forget what you've ever heard or imagined
about computers. Just consider this:

The computer is the most general machine
man has ever developed. Indeed, it should be
called the All-Purpose Machine, but isn't, for
reasons of historical accident (see nearby).
Computers can control, and receive information
from, virtually any other machine. The computer
is not like a bomb or a gun, which can only des-
troy, but more like a typewriter, wholly non-
committal between good and bad in its nature.
The scope of what computers can do is breath-
taking. Illustrated are some examples (although
having all this happen on one computer would be
unusual). It can turn things on and off, ring
bells, put out fires, type out on printing machines.

Computers are incredibly dogged. Computers
can do things repeatedly forever, or an exact,
immense number of times (like 4,901,223), doing
something over and over, depending on whether
it's finished or not. A computer's activities
can be combined in remarkable ways. One activity,
repeated over and over, can be part of another
activity repeated over and over, which can be
a part of still another activity , which can be
repeated ad infinitum. THERE ARE DEFINITE
LIMITATIONS on what computers can do, but
they are not easy to describe briefly. Also, some
of them are argued about among computer people.

It caw wake
ricTuvef Ok & Sereenm,

3t can even allow you
b«zmru\ara rchur‘; on'a serees.

T\“)’ll‘\j in on Screnns
awd M»-ll.e

o>

2>

gellina back answevs
poetry Wt was dore}
be et duk, or whalever

A HELPFUL COMPARISON

GLRY

Lovdspeaker

)

(eompoter
;pvﬁﬂsh) ~oti :)

-

It helps sometimes to compare computers with typewriters.
Both handle information according to somebody's own viewpoint.

Nervous Question HelEful Parallel

"Can a Typewriter
Write a Poem?"

"Can a Computer
Write a Poem?"

(Sure. Your poem.)

"Can't Computers Only
Behave Mechanistically?"
(Yes, but carrying

"Can't Typewriters Only
Behave Mechanistically ?"

out your intent.)

"Aren't Computers
Completely Impersonal?"

"Aren't Typewriters
Completely Impersonal?"

(Well, it's not like handwriting,
but it's still what you say.)

COM{;\)\TQX‘

O pODOOOO

O A W Y

S?onb(ow ”.\f«

THE ALL- PURPOSE MACHINE

Computers are COMPLETELY GENERAL,
with no fixed purpose or style of operation.
In spite of this, the strange myth has evolved
that computers are somehow "mathematical."

Actually von Neumann, who got the general
idea about as soon as anybody (1940s), called
the computer

THE ALL-PURPOSE MACHINE.

(Indeed, the first backer of computers after World
War II was a maker of multi-lightbulb signs. It

is an interesting possibility that if he had not

been killed in an airplane crash, computers

would have been seen first as text-handling and
picture-making machines, and only later developed
for mathematics and business.)

We would call it the All-Purpose Machine
here, except that for historical reasons it has
been slapped with the other name.

But that doesn't mean it has a fixed way
of operating. On the contrary.

COMPUTERS HAVE NO NATURE
AND NO CHARACTER,

save that which has been put into them by whoever
is creating the program for a particular purpose.
Computers are, unlike any other piece of equipment,
perfectly BLANK. And that is how we have projected
on it so many different faces.

\»\ost'\h\ Palien”

Many ordinary people find computers
intuitively obvious and understandable;
only the complications elude them. Perhaps
these intuitively helpful definitions may help
your intuition as well.

1. Think of the computer as a
WIND-UP CROSSWORD PUZZLE.

2. A COMPUTER IS A DEVICE FOR
TWIDDLING INFORMATION. (So, what kinds
of information are there? And what are the
twiddling options? These matters are what
the computer field consists of.)

3. A computer is a completely general
device, whose method of operation may be

changed, for handling symbols in any
specific way.

e DEEP DARK SECRET

PRNCILE 1
t

T
PROGREM
Loo¥d

fNCIne 2.
THE PROGRAW
BRANCY

PUNCINLE 3.
ALL Pevices
LooK ALIKE.

Com-
P | —
Ter

THE MAGIC OF THE COMPUTER PROGRAM

The basic, central magical interior device
of the computer we shall call a program follower.
A program follower is an electronic device (usually)
which reads symbols specifying operations, carries
out the step each specifies and goes on to the next.

The program follower reads down the list
of instructions in the program, taking each instruction
in turn and carrying it out before it goes on to
the next.

Now, there are program followers that just
do that and nothing more; they have to stop when
they get to the end of the list of instructions.

(=

A true computer, however, can do several
things more.

1t can jump back to an earlier point
in the program and go on from there. Repeating
the program in this fashion is called a loop.

it can perform tests on symbols in
the memory-- for instance, to see if a loop
has been done enough times, or if some other
part of the job has been finished-- and jump
to some other program depending on these
symbols. This is called a branch.

Finally, the computer can change
the information stored in memory. For instance,
it can place an answer in a specific part
of memory .

WHAT, THEN, IS A (Digital) COMPUTER?

A device holding stored symbols
in a changeable memory,
performing operations on some of those symbols
in the memory,
in & sequence specified by other symbols
in the memory,
able to change the sequence
based on tests of symbols in the memory,
and able to change symbols in the memory.
(For example, do arithmetic and
store the result in the memory .)

Rather than try to slip it to you or prove
it in some fancy way, let's just state baldly: the
power of such a machine to do almost anything
surpasses all previous technical tricks in human

history .

HOW CAN A COMPUTER CONTROL
SO MANY DIFFERENT THINGS?

Answer. Different as they may seem, all
devices are controlled in the same way. Every
device has an interface, that is, its own special
connection setup, and in this interfece are the

device registers.

These device registers look the same to the
computer: the computer program simply moves
information patterns into them or moves information
patterns from them to see what they contain.

4

INTERFACE

}———> particular symbolic signals

device reyferc the device needs

The computer, being a machine, doesn't
know or care that device register 17 (say) controls
a hog feeder, or device register 23 (say) receives
information from smog detectors. But what you
choose, in your program, to put into device register
17, controls what the hogs eat, and what comes
into device register 23 will tell your program,
you hope, about smog conditions. Choosing how
to handle these things in your program is your
business.

CoMYOTER

1

HOW DOES THE LOOP WORK?

The computer does things over and over
by changing a stored count, then testing the stored
count against another number which is what the
count should get to, and going to the beginning
if the desired count has not been reached. This
is called a loop. (If there's no way it can ever
get out, that's an endless loop.) (Actually, the
program loop is done the same way as a program
branch: IF a certain count has not been reached,
it branches BACK to the start of the loop.)

Other things besides programs may be stored
in the memory . Anything besides programs ar
usually called data.)

dore mewor

program

The instructions of programs use the data in different
ways. Some programs use a lot of data, some use

a little,'some don't use any. It is one of the fascinating
and powerful things about the computer that both

the instructions of a program, and the data they work
on, are stored as patterns of bits in the same memory,
where they can be modified as needed. Indeed, the
program can modify its own patterns of bits, a very
important feature.

WHAT DO PROGRAMS LOOK LIKE?
In what forms are these programs stored, -

you ask? Well, they are written by people in computer
languages, which are then stored in some form in

_eore VAQ\MOVY
4

r&os&((\\ N
—

PRO&RA
FOLLOWER 3 I Loo?
»
PURTHER
T W PrOGRIY

" Rhat™ & an '];\‘ferﬂ\ag?"
QSke* T‘QL&L) "‘\‘tl'l"\e.

* Whaterer Torms Yoo ©On,"
wid fi 4aq.

heart patient

oil refinery
musical instrument
display screen
disk memory

the computer's fast core memory, where the program
follower can act on them. But what does a computer
language look like, you ask? Aha...

0 YO PAGE 1b

(If you want to see what the bottom-most level looks
like, with all the bits and things, skip ahead to p.J5.)

WHATEVER IT MAY DO IN THE REAL WORLD,
to the computer program
it's just another device.

ANALOG COMPUTERS DISPOSED OF

There are two kinds of computers: analog
and digital. (Also hybrid, meaning a combination.)
Analog computers are so unimportant compared to
digital computers that we will polish them off in
a couple of paragraphs.

"Analog" is a shortened form of the word
"analogy." Originally an "analog" computer was
one that represented something in the real world
by some other sort of physical enactment-- for
instance, building a model of an economic system
with tubes and liquids; this can demonstrate
Keynesian economic principles remarkably well.

However, the term "analog" has come to mean
almost exclusively pertaining to measurable
electrical signals, and an "ana'l—og' computer" is
a device that creates or modifies measurable
electric signals. Thus a hi-fi amplifier is an
analog computer (it multiplies the signal), a music
synthesizer is an analog computer (it generates
and reshapes ansalog signals). Thus the term has
deteriorated: almost anything with wires is an
analog computer.

Analog computers cannot be truly programmed,
only rewired.

Analog equipment is useful, important and
indispensable. But it is s8imply not in the same
class with digital computers, henceforth called
"computers" in this book, which manipulate symbols
on the basis of changeable symbolic programs.

"Analog computer" also means any way of
calculating that involves measuring approximate
readings, like a slide rule.

12

LET'S CALL & SPADE A SPRDE

It's awfully easy to fool people with
simple words, let alone buffalo them with weird
tethnical-sounding gab. The thing about tech
talk is that it can really be applied to any area.
The trick lies in the arrangement of boxcar
adjective nouns, and in the vague use of windy
terms that have connotations in some particular
technical area-- say, the space program.

Just consider. We might call a common
or garden spade--

A PERSONALIZED EARTH-MOVING
EQUIPMENT MODULE

A MINERALOGICAL MINI-TRANSPORT

A PERSONALIZED STRATEGIC TELLURIAN
COMMAND AND CONTROL MODULE

AN AIR-TO-GROUND INTERFACE
CONTOUR ADJUSTMENT PROBE

A LEVERAGED TACTILE-FEEDBACK

CoMPurtees DEFnT)
JUST LIKE CAMTRAS AND CARS

Just the way everyone can understand cameras, viz.:
"A camera is a device you point at something
to willfully capture its appearance.”

Just the way everyone can understand cars, viz.:
"A car is a device people get inside which
then goes somewhere else, under the willful
control of the driver."

Well, how about
"A computer is a device which manipulates

information and external accessories, accor-
ding to a plan willfully prepared by a planner.”

INSPICRTIONAL
A

FICTIONS ABOUT WHAT COMPUTERS DO

Many people suppose there is nothing

computers cannot do (see p. 45); some peo-
ple, indeed, think there is nothing com-
puters do not already do.

A couple of years ago, a leading
picture magazine carried a piece a-
bout Stanford's Artificial Intelli-
gence Laboratory, claiming that one
"Shakey the Robot" had been developed
to near-human intelligence and capa-
bilities, This was pure bosh, since
repudiated in the computer magazines,
but a lot of people Out There in
Readerland believed it. (See "The
God-Builders,”" flip side.)

Once I had a long discussion with
a somewhat wild-eyed young woman who
believed that the government was moni-
toring her brain with computers. I
think I persuaded her that even if
this were feasible it would cost the
government tens of thousands of dollars
to do it, and that probably no existing
government agency was that interested
in her thoughts. I'm not sure she was
persuaded.

GEOMASS DELIVERY SYSTEM

A MAN-MACHINE ENERGY-TO-STRUCTURE
CONVERTER

A ONE-TO-ONE INDIVIDUALIZED
GEOPHYSICAL RESTRUCTURIZER

A PORTABLE UNITIZED EARTHWORK
SYNTHESIS SYSTEM

AN ENTRENCHING TOOL (Firesign Theater)
A ZERO-SUM DIRT LEVEL ADJUSTER
A FEEDBACK-~ORIENTED CONTOUR
MANAGEMENT PROBE AND
DIGGING SYSTEM
A GRADIENT DISEQUILIBRATOR

A MASS DISTRIBUTION NEGENTROPRIZER

A DT SYSEM

AN EXTRA TERRESTRIAL
TRANSPORT MECHANISM,

Spades, not words, should be used for
shovelling. But words should help us unearth
the truth.

In the computer field, the same things are
often called by different names (for instance,
the IBM 1800, a fairly ordinary minicomputer,
is called by them the "IBM 1800 Data Acquisition
and Control System"), different things are often
called by the same names, and things can be
inside-out and upside-down versions of each
other in extraordinary variety. (Indeed, compu-
ter people may find this book inside-out, which
is okay with me. Life is a Klein bottle.)

Sorting things out, then, means having a
few basic concepts clear in your mind, and
knowing when you see examples and variations
of them.

Computer people often gay that to understand
computers you have to have a "logical mind."

There's no such thing. But saying such things
intimidates many, especially those who have

change programs,
change disks and tapes,

Compurer oRCRATOR

SOME (CPMPUTER PEOTIE
to Ju‘hvvuk "":)

Computer operators turn 'em on and off,

select modes of operations for programs

that can do more than one thing.

(See p. 38.)

Input typists (also called

keypunch operators)
are clerks who copy information

into the computer (on terminals)
or onto something the computer can read
(punch cards, magnetic disk, etc.)

NOTE: these jobs may end in a few years
when nothing else has to be copled anymore
because users put things in themselves.

HEY
iGineer

or in the gears.

rotating machinery.

A NAIVE USER (no offense)
is an ordinary person

who doesn't need to know any of these things
in order to do something useful with the computer.

Creating programs to help him is the frontier

of computing.

Computer repairmen, or "field engineers,
f1x computers and their accessories
when something goes wrong electrically

KEvPUNeH OMERATOR
N
TROVRANME \@

Computer programmers
create exact plans

, for what the computer
is to do,
then change them
till they work.

They always wear tie clips,
at least if they wear ties,
so as not to get pulled into

Nrwve vsex

been told they do not have "logical minds.”

¥hat is meant, actually, ia indeed important:
in working with computers you must often work
out the exact ramifications of specific combi-
nations of things, without skipping steps.

But the other mode of thinking, the intuitive,
hae its place in the computer field too.

Whichever your habitual style of mind, computers
offer you food-- and utensila-- for thought.

HORRIBLE MISUNDERSTANDINGS

Some people think of computers as things
that somehow mysteriously digest and assimilate
all knowledge. "Just feed it to the computer,” is
the motto. But what you feed into the computer
just sits there unless there's a program.

"How would you do that by computer?” is
a question people often ask. The question should

WHAT YOU'VE SEEN PROBABLY WASN'T
"A COMPUTER."

Get out of your head the notion that some
one system you've seen showed you what
Computers Are Reslly Like. Computer systems
can be as different externally as bats and whales.
(Yet it's the same kind of heartbeat, but that's
no help in dealing with them.)

Then what is it computer people know,
you may ask, that leads them to understand

new systems quickly? Aha. Computer people
simply adjust faster to whole new worlds.

AN
0

&2

THE AUTOMOBILE ANALOGY (more}

"The Interstate was bumper-to-bumper,
but after we had lunch at the rest stop it
cleared up till we got to the tollbooth.
Then llarry got lost on the interchange,
and we had to double back on the service
road."”

How incomprehensible to someone from
1905. Yet how simple-minded when you un-
derstand it. That's how it is with com-
puters. -

Computer talk sounds so strange and
incomprehensible to you folks out there--
yet to us in here it's often as simple as
the lines above-- if you know the funda-
mental concepts.

And nothing in the normal everyday
world will have prepared you for them.

It's not jargon, but the simplest
way to express thoughts in these areas.

be, "how would you do that at ail?" If there is

a method for doing something which can be broken
down into simple steps, and requires no human
judgment, then maybe we can take those steps
and program them on a computer. But maybe we
can also think of a simpler way to get them done.

Then there is the idea that a computer is
something you ask questions. This assumes, |
guess, the earlier premise, that the computer
has already digested and assimilated a lot of
stuff and can sling it back at you in new arrange-
ments.

USING A COMPUTER
SHOULD ALWAYS BE EASIER
THAN NOT USING A COMPUTER.

If it isn't, you
(or your company, or your state)
may have been sold a bill of goods.

OR they may have decided

your inconvenience is less important
than something else.

In any case, you have a right to ask
sharp questions,

WHAT IS THIS SYSTEM ABOUT?
Handy questions to size up
what a computer is supposed to
be doing.
What data does it contain?

Where is the data stored?

What other data will it
link up to?

Actually what must happen, to get
"questions" answered, is this: there must be
gome program that puts input material into a
data structure. (See "Data Structures.”) Then
you need progrems that will count and trace,
or whatever, through the data structure in ways
you desire. Then you need a way to start these
tracing-and-searching programs going through
the data structure in ways you want. So you
need a program accepting input from a keyboard,
or whatever, and starting the other programs
in operation. ..

THE DAMNED LIE
"Computers are rigid and inhuman."
A BETTER APPROXIMATION

People are sometimes (all too often)
Tigid and inhuman. (Machines and
animals are nonhuman-- the term 'in-
human' appli€s only to people.)

“Rigid and inhuman" computer systems
are the creation of rigid and inhuman
people.

What information
do you suppose
can reasonably
be derived from that?

What are the key
input and output devices?

In what forms
does information
go in and out?

What do you suppose
they might want to know?

e NEW FRA

A new era in computers is dawning.

The first, or Classic, computer era
used straightforward equipment and work-
ed on straightforward problems.

creAR-gor
N s

CUASSIC. COMPUTER
(et Yr“")

The second, or Baroque, computer
era used intricate equipment for hard-
to-understand purposes, tied together
with the greatest difficulty by com-
puter professionals who couldn't or
wouldn't explain very well what they
were doing.

BAROQUE COMPNE R (see

BARORUE

é\ T(KN(,E

%S & purpose
& Miviges >
(&S5, gomp,

Shw,
()
i,

No one com-

But a change is coming.
pany or faction is bringing it about, al-
though some may feel it is not in their

interest. I would like to call it here
the DIAPHANOUS age of the computer.

By diaphanous™ I refer both to the
transparent, understandable character of
the systems to come, and to the likeli-
hood that computers will be showing us
everything (dia-, across everything,
phainein, to Show). (frisfler e see fpsde)

n the first place, COMPUTERS WILL
DISAPPEAR CONCEPTUALLY, will become
“transparent', in the sense of being
parts of understandable wholes. More-
over, the "parts" of a computer system
will have CLEAR CONCEPTUAL MEANING.

In other words, COMPUTER SYSTEMS WILL
BE UNDERSTANDABLE. Instead of things
being complicated, they will become
simple.

Now, many people think computers are by
their nature incomprehensible and complicated--
unfortunately, that's because they have been
MADE TO BE. Usually this is unintentional,
but I fear not always. EXAMPLE. Instead of
being told, "this is the mysterious XYZ comput-
er, it has to have things just so, you have to
fill out these RMQ forms to go into the V34...",
you will hear such surprisingly simple things
as "This system is set up for keeping track of
who owes what to the company. On the screen
you can get lists of accounts and outstanding
bills and who owes them; if you point at one
with the light pen, the printing machine over
here will print a bill all set to go in the
envelope."

In other words, systems will increasingly
have UNDERSTANDABLE PARTS WITH UNDERSTANDABLE
INTERCONNECTIONS .~

fa
T T
DIsMny sceeen
Bones hevt vepreses])
UNSERSTAN D AL
um..‘,%?i nif:(ff\m' <5 Kevsernn
ohsevrig
Sroene severog
SYSTCM
b useER
L Reyisron
S¥stEm

What is responsible for this remarkable
change?

For one thing, smaller and smaller com-
panies are buying computer services, and they
won't stand for ridiculous complications.

For another thing, a number of people in the
computer field have gotten sick of systems
that make things hard for people. Finally,
the price of computers, especially micro-
processors (see p.) are coming down so
fast that they can be' tailored to fit people,
rather than vice versa. But most of all,
it's just'time, that's all,

Lo

BIBLIOGRAPHY

C.L. Freitas, "Making the Best Buy for the
Small Business.” Computer Decisions,
March 73, 22-26.

Compares the relative costs of
minicomputers and time-sharing; concludes
that minis are the best buy.

Burton L. Katz, "Making Minicomputers Work
in a Medium-sized Business." Data
Processing, Winter 1971, 9-11,

Stresses the point that well-des-
igned computer systems can be used by
existing personnel of a firm, without
excessive complication,

Frederic G. l]ithington, “Cosmetic Programming."
Datamation, Mar 70, 91-95. tHow to make
systems Iriendly on the outside.

N
NTERACTIVE Cy
AL \)S‘EMS

Used to be that ordinary people had to
deal with computers by filling out intricate
forms, which were then translated into punch
cards., The forms put things in weird cate-
gories (see "Coded-Down Data," p.:z’y .

No longer.

Anyway, no longer necessary.

Computer systems can now give you action,
excitement-- and explanations.

This is done through the magic of the
TERMINAL. Terminals come in two conspicuous
flavors (typewriter and screen or 'boob tube')
and also have two less-noticeable divisions
("Teletype” or "industry" versus "IBM type.")

Anyway, a terminal is something that
allows a person and a computer to type at each
other.

Now, computers are merely gadgets for
twiddling information. They no more under-
stand English, or human psychology, than
puppies can read music. (See "Artificial In-
telligence,” p.\1-1%) But the computer's prog-
ram can, for instance, direct the computer to
type out a simple question, and compare the
user's answer with a simple set of alternatives.
For example, suppose the user is visiting a hos-
pital. A computer can sign him in without the
abrasiveness of a receiving nurse, and with far
more patience. The following might be a sample
dialogue. (llere the computer types what's in
caps, and the user’s replies are in lower-case.)

DO YOU HAVE AN ACUTE PAIN? (Y, N, DK)
dk
YOUR ANSWER IS: DK FOR 'DON'T KNOW."

DOES THAT MEAN YOU'RE NOT SURE

WHAT 'ACUTE' MEANS? (ANSWER A)

A PAIN COMES AND GOES? (ANSWER B)

YOU HAVE A PAIN SORT OF ON THE

BORDER? (ANSWER C)

[+

IS THIS PAIN IN AN EXACT PLACE YOU
CAN IDENTIFY? (Y,N,DK)
y

An interactive system of this kind is call-
ed a conversational system,in that it "converses"
with the user. e secret is that the alterna-
tives in the computer program are few and care-
fully worked out beforehand: there are great pit-
falls when there are too many alternatives, as
when such conversational systems are used for
teaching (see pp. dM IS-19).

Here is a straightforward example: a systen
I wish I had for balancing a checkbook. Note
that the inner program for this conversational
system could be written'in any of the three lan-
guages presented later.

WHAT PROGRAM WOULD YOU LIKE TO RUN? ckbk

CHECKBOOK PROGRAM STARTS.

DO YOU WANT TO PROOF THE NEW STATEMENT FOR
MARCH?

PLEASE LIST THE CHECKS THAT HAVE COME IN.
231, 239, 240, 242, 244, 245.

SUM OF INCOMING CHECKS IS $345.72.
WANT BREAKDOWN? n

PRESUMABLY BANK IS CHARGING YOU .60 FOR
SIX CHECKS. ALSO MONTHLY CHARGE OF
FIFTY CENTS (PLEASE CONFIRM). 'y

ARE THERE ANY OTHER BANK CHARGES THIS
MONTH? n

ARE THE FOLLOWING DEPOSITS ON THIS STATE-
MENT-- MARCH 1 SALARY, $854.007 vy
GIFT FROM AUNT AGATHA, 14 MARCH,
$25.00? n

TOTAL ON STATEMENT SHOULD BE $1753.21.
PLEASE CONFIRM. vy

YOUR CURRENT FLOAT IS $656.75.

EAKDOWN?
CURRENT FLOAT AS FOLLOWS--

DO YOU

DO YOU WANT

NO. 241 IRVING'S RECORDS 7 MARCH § 6.75
NO. 243 SINISTER & MALADROIT (LEGAL

FEES) 12 MARCH $600.00
NO. 246 DOGGIE HAIRDRESSERS

12 MARCH $ 20.00
NO. 247 SAM GRONK (REPAYMENT)

14 MARCH $ 30.00
TOTAL $656.75

ARE YOU DONE WITH CHECKBOOK PROGRAM? 'y

(The part shown above is easy. Thinking

out the ways for the user to correct his re-
cords, and/or the bank, is the tough part.)

COMPANIES THAT WILL SET UP WHOLE
LITTLE BUSINESS SYSTEMS

A number of companies make minicomputers
(partial list on p. Y3 }; however, companies
who want business systems built around mini-
computers may want to investigate companies
that will put together whole business systems
for them around minis.

(It is hoped that one contribution of
this book will be to give the reader a better
idea of what to ask for.)

Two companies that seem to be in this
business are:

Genesis One Computer Corporation,
Park Ave., NY 10016. Appears
to use BASIC language (see pp.16-17).
Qantel Corp. (offices in five major cit-
ies). Sells a minicomputer of their
own manufacture, using a language
called QIC (Qantel Interactive Code),
which a salesman tells me is "just
like BASIC" (see pp. 16-17). Mini-
mum setup includes a display terminal,
printer, computer and 6-million-char-
acter disk, at $31,000.

THE MIRACLE OF OVER- THE ~PHONE TERMINALS
(some people ge ape | To see o szwﬂud..:j "1 dself)

In a conversational system

TermNALS

A terminal is sirply
any device by which
a person and a compuier
can type at each cther,

tids Love tore .
his one ts a videc
terminal or Keyscope
(see p. DM 734). It
allows the computer
to present textual or
numeric information,
play games with you,
quiz you for in
mation in a

More cxpensi ;
fer computer Jdi s
allow pictorial

tron under tac user's
control

wter terminais
scussed in

hooked up to the main
conmputer at the

Chicago Circle Cunpus,
University of Illinotis.
What each perscn does

at his terminal

is normally independent
¢f what any other person

does, through time-
sharing the

computer, Installations
more suited to
sharing can ha
numbers of
all over a canmy

[

A CONSIDERATE LAYOUT

the computer can helpfully
lead the user on.

Motto 1 for the new era:

USING A COMPUTER SHOULD ALWAYS
BE EASIER THAN NOT USING
A COMPUTER. -

Motto 2 for the new era:

THE NEW FRONTIER IN COMPUTERS IS
CONCEPTUAL SIMPLICITY AND
4 Y.
People who delight in intricacy are going to
have to learn some new tricks. Internal in-

tricacy is fine, as long as the user doesn't
have to deal with it,

Motto 3 for the new era (to computer
people):

MAKING THINGS EASY IS HARD.
Motto 4 for the new era:
ANY SYSTEM FOR A SPECIFIC PURPOSE

SHOULD BE T ARBLE TN TEXN
MINUTES OR LESS.

Anyone who has been taught the use of
some fixed-purpose computer system, such as
an airline reservation systen, may doubt this.
But perhaps this book will clarify things
somewhat,

A "GOOD-GLY SYSTEM

is a conversational
computer system that is
CLEAR,

EASY TO

ALD FRIFNDLY .

ANY MAN OF COMMON ¢
DESIGN A COMPUTER I'E
A PURPUSIE IMPORTANT TO 1]
the data structure, form
information, general opera-
tions, record-kecping, a
responses to on-linc users.

But for some reason this is
generally kept a sccret.

“JOE TURKEY USER™

A good friend of mine, Jordan Young,
is a former R.E.S.1.5.T.0.R. (sec p. Y7
and now a systems prograrmer (see p. 4§
on the mighty Dartmouth time-sharing sys-
tem, DTSS. (See p. ¥§ .}

Jordan tells me that one of the more
important pecple at Dartmouth is a mythical
individual named Joe Turkey User. This es-
timable personage knows hardly anything
about computers, makes a lot of mistakes,
thinks he understands what you tell him
when he doesn't, tends to hit the wrong
keys on the terminal, and in general tends
to screw up.

But the motto up there is: “If it's
not simple enough for Joe Turkey User--
it's too complicated."

DISS is a good-guy system.

THE MOST IMPORTANT COMPUTER TERMS FOR THE '70s

Here are some phrases that will count in the
new era of computing, when we will run into
more and more computer systems set up for
particular purposes.

on-line
connected to a functioning computer,
(Note that the computer may be in the
typewriter or desk itself.)
(As distinct from off-line, setting
things up for processing later.)
interactive
not just connected, but responding to
you. Interactive systems and programs
can respond to vour choices and requests,
clarify what they want from you, etc,
remote
referring to something far away, as dis-
tinct from local, right where you are,
A computer can be either remote or local,
e.g., on your desk,
front end (n.), front-end (adj.)
whatever stands between you and a system.
A front end can be the terminal in your
office, for example. A front-end program
is one which mediates between a user and
some other system or program, perhaps
collecting data for it by quizzing you.
dedicated
set up for only one use. A big computer
at a computing center has to have many
uses; a little computer in your office
can be dedicated. Dedicated computers
are now hidden in all sorts of things:
cash registers, for example (see "Micro-
processors,” p. 44},
turnkey (adj.)
turned on with a key. Especially,
turnkey systems, small computer systems
thaf can just be turned on (key or not)
and are fully set up, ready to run,
programmed, ctc,

Y
\

real-tine
respondinyg to events in the world as nceded,
without Jdelays. Computer systems that con-
trol machinery, make airline reservations,
predict the weather or respond to naive users
are rcal-time. Systems that can catch up
overnight dare non-real-tine.

'intelligent terminal"
stupid term referring to any object that
does more than act like a plain terminal,
The term is stupid because it confuses
distinctions, Some "intelligent terminals"
have extra circuits for various purposes;
others contain their own minicomputers;
still others are ordinary terminals con-
nected to f{ront-end programs.

user-oriented

set up for "users'"-- people who are not
programmers or input typists, but who
actually need something done.

user level (n.}, user-level (adj.)

YOUR FIRST COMPUTER CONTACT

When you first sit at a computer terminal,
the feeling is one of sheer terror. Sweat and
chills, jumpiness and sudden clumsy nervous
motions, lunatic absentmindedness and stammering T
fear and awkwardness interfere with your ability
to function or understand the person who is
helping you.

It's perfectly normal.

"where the user is'" mentally; his level
of involvement. User-level system,
system set up for people who are not
thinking about computers but about the
subject or-activity the computer is sup-
posed to help with.
naive user (n.), naive-user (adj.}
person who doesn't know about computers
but is going to use the system. Naive-
user systems arc those set up to make
things easy and clear for such people.
{We are all naive users at some
time or other; it's nothing to be ashamed
of. Though some computer people seem to
think it is.)

idiot-proof

Thank you, Carson's.

MIlICORPUTER ON fREMKES

not susceptible to being loused up by a
naive user,

The hostility in this term may in
some cases be real. (omputer people
sometimes forget, or do not wish to tol-
erate, the degree of confusion that naive
users bring to the keybeard. This atti-
tude is not just their problem but every-
body's, since they lay it on us.

good-guy system

term to be used here for naive-user sys-
tems that are (riendly, helpful, simple
and clear.

stand-alone system

system {regardless of purpose) which
doesn't have to be attached to anything
else. (May contain its own computer.)

(= ",36'D

“Modem” takes the terminal's pulse code

and warbles it into the phone as audible

tones. The computer answers with similar
Ay warbles and tweedling; the modem converts
\» that back into alphabetical characters.

T

A PHONE SYRER
COUPLEK
Compureg’s
RS-232 is the standard interface. SPECTAL
ProNE STTVS

000 OO0 00000

YOU CAN HiNi- & TERMNAL

OR # 816 CompuTER. (see p.70).

(What it does, of course, depends on the program,
not the size or brand of computer.

CITHER ON 4 MINICCMPUTER (cee p. Te)

13

TWo KINYS OF TERMINALS

You would think the fundamental dichotomy
among computer terminals was between those that
print on paper and those that show you stuff on
a screen. Butitisn’t. (That's like the difference
between people and whales-- much greater outside
than inside.)

Actually the fundamental distinction between
terminals is between ASCII (pronounced "Askey")
and IBM terminals. ASCII is a code and scheme
of organization which was adopted by "the indus-
try," under the blessing of the National Bureau
of Standards. But IBM has pointedly ignored this
standard.

The principal terminal of the ASCII type,
in sheer numbers, is the model 33-ASR Teletype
(trademark of Teletype Corp.), so this kind of
terminal is called the "33 ASR type,"” or "Teletype—
type," or we even say a given terminal "looks
to the computer like a Teletype."”

W fller medel (3BASR)

gy s Aeme by [Hle
sbm.-. oy linder.
ey e

Re: o
et

IBM, however, seems to like changing its
systems around a lot, for instance changing its
codes when it brings out a new computer. (For-
tunately, it just happens that they also sell adap-
ters between them. Whew.) So IBM-type terminals
are different by design.

There is one main type, however, exem-
plified by the IBM model 2741 terminal. Thus we
say a terminal is an "IBM-type" or "2741-type"
terminal.

Both Teletype- and IBM-type terminals
come in either video-screen or printing models,
from a variety of manufacturers.

Indeed, even the Selectric (IBM (rademarl&,

_SERRR=<"} typing mechanism appears in some
Teletype-type terminals.

There is a very important performance
difference between ASCII and IBM terminals.
The ASCII terminal can send each character typed
by the user-- each "keystroke"-- to the computer
immediately . This means that highly responsive
programs can be written, which examine the user's
input and can reply instantaneously, if need be,
after anything the user types.

IBM-type terminals, however, require a
"line feed" character or an "end of transmission"
character to be typed by the user to make it the
.computer's turn. This locks the keyboard so the
person can't use it. Then the computer must type
something, ending with its own "unlock"” signal
that makes it the person's turn again.

Why this unwieldy design? Supposedly it
results from the curious decision, in the design
of IBM's 360 computer, to make all devices
resemble the card reader as far as the computer
is concerned. Just as the card reader reads
punched cards till the last one is done, the IBM
terminal is designed to send and receive characters
until a "finished" condition is reached.

It makes sense to OWR your own:

€ TERMINAL,
Some T ‘%U%\%HTUKC_

All are ASCIl-type unless otherwise noted.

Note: there are hundreds of types and
brands of terminals available. These are just
some thoughts.

PRINTING TERMINALS .

BEST BUY? The model 38 ASR Teletype
gives you upper and lower case, and is otherwise
similar to the standard model 33. $70 a month from
RCA Service Company, Data Communications Div.
(offices in major cities); $15/mo. for the coupler.
30-day cancellable but costs $50 to put in, $24 to
take out.

There is a cute terminal that behaves just
like the 33 ASR, but is faster and uses NCR
pressure paper or a ribbon, interchangeably .
The Extel Series A teleprinter from Extel Corp.,
310 Anthony Trail, Northbrook, [11. 60062.

If you like Selectrics, but want to go to ASCII,
there is one weird possibility .

A firm called Tycom Systems Corporation
(26 Just Road, Fairfieid NY 07006) offers an
interesting alternative. It happens that all Selec-
trics (anyway, Model I and Model I1) have a seam
around the midriff at which the typewriter can
be unscrewed into two sections. Clever Tycom!
They make a device which fits between, looks to
the bottom like the top of the Selectric, and looks
to the top like the bottom. Also, it turns the
Selectric into a terminal, receiving ASCII codes
from whatever computer you attach it to and
causing the computer to type them, or sending out
what you type to the computer in ASCIE.

Curiously, IBM has given its blessing to
this arrangement, meaning you can have this
sandwich deal done to a Selectric you rent from
IBM, and serviced under beefed-up [BM mainten-
ance agreements ($72 per year, or $16.5¢ per hour,
as of 1970) .

see pp. Dio20-1)

PISPLAY TLERMINALS ()
T s, 3one ase video.

There are nany br

The earlier video terminals came with
dreadful styling, like a 1940s science-fiction
movie. But as an example of how the market is
developing. one of the handsomest video terminals
is the $1300 Mini-Tec from TEC Incorporated,
9800 North Oracle Road, Tucson, Ariz. 85704.
it comes covered with wood-grain contact paper
and looks very nice. (You should have seen
their early models.)

The Hazeltine 1000 video terminal rents
for $49/mo. on a l-year contract. LOWER-CASE
QPTION; modem and coupler apparently not
included. (Hazeltine, Greenlawn, NY 11740,
with offices all over.)

s

'Iderkok:

Coupler,
o
andiel ' n place

If you have nio objection to ITT, they offer
& portable video terminal with built-in modem
and coupler, the Asciscope, for $65/month.
Supposedly there’s a long waiting list. (ITT
Data Equipment and Systems Division, East Union
Ave., East Rutherford, NJ 07073.)

Ter a4 civplav terminal in rour car,
see Kustom Electronics, Inc. (aren't they the
rock-amp people?), Data Communications Division,
1010 West Chestnut, Chanute, Kansas 66720.
They've already set up travelling terminals for
the mobile constabulary of Kansas City (Mo.),
Palm Beach and Nashville. (Communications,

Jan. 73, ad p. 47.) Now, omeed
a whole stationary radio setup to run that. ..

Classic
T

MISCELLANEOUS

Various firms rent terminals, some on a
short-term basis. (Some terminal companies
are bad news, keeping up their equipment badly
and offering poor service, so wateh it.)

(The day will come, let's hope it's soon,
that you can rent & terminal overnight or for a
weekend like a movie camera. But till people
get a sense of how far and fast things are moving,
we'll continue to schlock along haphazardly.)

Unfortunately rental people are hard to find,
since they are usually local, and the Yellow Pages
idiotically lump together every possible form of
computer sales and service under "Data Processing
Equipment and Supplies,” and few firms further
specify their business in the listing.

Here are some names (neither endorsed nor
criticized):

Computer Planning & Supply, Chicago

TTS Systems, LA

Vardon & Associates, Dallas

A good outfit, that rents both ASCII and
IBM-type terminals of their own manufacture, is
Anderson Jagobson Co. (1065 Morse Ave. ,
Sunnyvale, Calif. 94086, and major cities). They
have a Selectric terminal, for instance, which
rents for about $100 a month (about the same as
the standard [BM 2741) but is portable.

To provide a memory with your ASCII or IBM-
IBM-type terminal, an odd machine called the
Techtran 4100 (about $1000 from Techtran Indus-
tries, 580 Jelfferson Rd., Rochester, NY 14623) can
be used for offline storage. [t uses a magnetic
cassette. Here are some things you can do with it:

type stuff into the Techtran,

later squirt it to a computer at high speed
receive stuff from a computer at high speed,
later type it back automatically on
the terminal
type into the Techtran, correct it, and then
have it typed back automatically --
no computer.
The question of whether the Techtran can be used
with the Digi-Log has not been publicly resolved.

It happens that Anderson Jacobson (above)
will rent you their 2741-type Selectric terminal,
with a Techtran, for about $220 a month total.
But they won't rent the Techtran separately .

A 2741-type Selectric terminal with memory,
offering these same capabilities, is now available
from IBM! It is the Communicating Mag Card
Executive (CMC). Since the Mag Card Executive,
to which they have added the communication
feature, costs over $200 a month, figure the
communication feature could cost another $100
or so monthly, or probably half again as much
as the Anderson-Jacobson.

Honeywell (Honeywell Information Systems,
Wellesley Hills, Mass.) has recently made
available a Braille program to be used with
"standard terminals" in their systems. (This may
be the adaptation developed at MIT to do Braille
on the 33 ASR.)

For those of us literary types who want
upper and lower case but are stuck with 33ASRs,
& LOWER-CASE CONVERSION KIT is available from
Data Terminals and Communications, Campbell,
California,

SoweTh
(R oh B e St aed ke

2 tevwinals (fens pwched H(-:'(u“i&)

FURTHER POOP

1If you're serious about keeping up with
developments in the terminal area, you might
want to subscribe to Terminals Review ($28/yr.),

highly spoken of by Datamation. (GML Corp.,
594 Marrott Rd., Lexington, MA 02173.)

A "CRT Survey™ listing characteristics
of 110 CRT displays (including both video ter-
minals and fancier pictorial displays-- see flip
side of this book) is available for ten bucks
postpaiad from Datapro Research Corp., One
Corporate Center, Route 38, Moorestown, NJ
08057,

Stawdard allsrl Terwins)
offered wil Jters

from DEC (see p. :7),

It's tue wodel V10§, Y3000,

VIDEO TERMINALS WITHOUT THE VIDEO

A very hot item right now is a terminal
called the "Digi-Log"-- actually several different
models-- available from Digi-Log Systems, Inc.,
666 Davisville Rd., Willow Grove, Pa. 19090.

This device fits in a briefcase. Basically
it is a keyboard with a socket for the phone,
and an antenna wire. You phone the computer,
drop the phone handset in the slot, and clip the
wire to the antenna of a TV set. Presto! On the
TV set appears what you and the computer type
at each other.

This is especially good for travelling
salesmen (to communicate with their offices and
ordering system via time-sharing computer)
and executives who do computer work from the
road. Also for people who want to show off
remote computer systems.

Disadvantage: only 42 characters per line,
which is awkward for some things, such as
programming in Fortran.

Price: $1200 to $1400. They also lease, at
rates as low as $40/month (3 years).

No lower-case as yet.

Alsc available on rental, supposedly, from
Westwood Associates, Inc., 50 Washington Terrace,
East Orange, NJ 07017.

Ann Arbor Terminals, Inc. (Ann Arbor,
Mich.?) is said to offer a similar unit that is
very nice.

The equivalent IBM-type terminal-~ keyboard,
coupler and clip to the TV-- is the IPSA-~100,
offered by 1.P. Sharp Associates, Inc. (Bridge
Administration Building, Bridge Plaza, Ogdensburg,
NY 13669). Unfortunately it's much larger than
the Digi-Log-- it comes in & medium-size suitcase
-- and more expensive ($1700 up). However,
they offer the APL character-set (see APL under
"Magic Languages," p.”2)) as an option-- even
a model with both normal and APL character-sets
as a switch-selectable option (costs even more).

Recently, of all things, plans for a do-it-
yourself unit of this type were announced in a
popular electronics magazine (Don Lancaster,
"TV Typewriter,” Radio-Electronics, Sept. 1973,
43-52). This does not include the full plans,
which are available for $2 from TV TYPEWRITER,
Radio-Electronies, 45 E. 17th St., New York,

NY 10003.

Supposedly this can be built for "around
$120"-- probably a deal more-~ if you are a skiiled
electronics builder or technician. But that looks
to include a great deal of labor.

The finished unit holds up to 32 characters
per line and up to 16 lines on the screen; a second
memory can be added, to hold a second alternative
screenful.

Upper case only.

TYPE RIGHTER:
The Magic Tylnewrﬁem

A number of different systems are coming
on the market to aid you in error-free typing.

IBM would have you call these "word pro-
cessing systems," since that makes Fhem sound
of-a-piece with their dictation equipment. Ac-
tually they're text regurgitation systems, but
let's just call them Magic Typewriters.

Prices of these things tend to run between
$100 and $250 a month.

Generally these are being sold as secre-
tarial aids, partly because they tend to be too
ungainly for use by writers themselves. A
principal use has been in large law offices,
where contracts, wills and such are stored as
"boilerplate’ (standard sections of Document)
and then modified slightly by the lawyer to
justify the legal fees.

Such systems all basicaily consist of
three things:

A typewriter, connected to some sort of
magnetic memory, such as a tape, coated
or disk

card , and

editing circuitry, which responds to

various acts by the user.

WHAT THEY DO: allow you to type stuff in, which
is both typed on the paper and at the same time
stored on the magnetic whatever. Small errors
you correct as you type along, generally by
backspacing.

The IBM Mag
MTSC) . Produces

tric Composer, a

Tape Selectric Composer (MT/SC,
lovely results with the Selcc-
very fancy Selectric.

But has

When you want a clean copy-- Preste Walt-o!
Put in clean paper, start the magnetic whatever
at the beginning, and the typewriter retypes it
without a mistake.

If you're lucky.

Unfortunately some of thesc systens are

quite badly thought out. TIn one or two cases
I am not sure whether they arc designed as they
Neither inter-

are accidentally or on purpose.
pretation 1s attering to the manufacturer.

I have had extensive experience with two
of these systems, the IBM Mag Tape Selectric
and the IBM Mag Card Executive. Suffice it to
say that if [believed that thesc systems were
as cumbersome as they are by accident, then the
sections in this book on IBM and its products
might have a very different slant. As it is,
these systems require 2 training period of (say)
a week, and require such continuous attention
to thelr curious mechanics that the user is
given little opportunity to think of anything
else. In both cases, in my opinion, the super-
ficial plausibility of the initial design prem-
ises knots into tangled ramifications which
verge on the preposterous. Much of this hook
was written on a Mag Card Executive-- and I'm
damned sorry I bothered.

Some systems of this type are:

The IBM Mag Tape Selectric (MT/ST or MTST}.
Records on sprocketed lémm mag film of the type
used for movie sound recording, and you have two
different tapes to get confused between.

The IBM Mag Card Executive. Records on a
plastic Hollerith card (see p.Z2 &) coated with
magnetic oxide. Variable width of characters
presents fascinating difficulties.

complications well beyond those of the Mag Tape
n‘clect‘rlc. _Lven more variable widths than Mag
Card Exccutive. Uses same mag-film cartridges
as MTST. "

(Note: for those who like the vutput fronm
the above devices, but appreciuate alsv the rela-
tive difficulty of their use, there is available
a computer peripheral device which rcads and
writes these 16mm mag tape cartridges. [don't
know who makes it, unfortunately.)

IBM's latest is called the Magnetic Memory
Typewriter, and seems to store up to one page in
a hidden memory. Apparently you can't set it
aside, like the cards or tapes.

A firm called Redactron makes magic type-
writers using either cassettes (audio-type) or
mag cards (like the Mag Card Executive}.

A firm called Savin does the same thing,
using a Tycom Selectric Sandwich (see under
"Printing Terminals,'" nearby).

Olivetti has one called the S$-14 Word Pro-
cessing System. Their cartridge (a disk?) stores,
they say, 150 pages of typing.

Two other outfits in the field are Trendata
and Quintype.

Woops!
Remington?)

For those interested in this sort of thing,
there is an International Word Processing Associa-
tion (Maryland Road, AMS Building, Willow Grove,
PA 19090.)

ilere comes Sperry Remington!
They have cne too.

(Sperry

See also the Flip Side of the book for more
high-performance text systems.

CompureR_(ANGUNKET

are what make computers go 'round.

If your computer only did one thing,
then to start it you'd only need one button to
press.

If your computer only did two dozen
things, without variations, then you could
let each operation be started by pressing
one of the keys of the terminal, and that
would be that.

But that's not what it's about.

We have lots of different things that we
want computersTdo, and we want one com-
mand to work on different varieties of data, or
on the results of a previous command, or even
to chew on another command itself; and so a
computer language is a contrived method of
giving commands to a computer that allows
the commands to be entwined in a complex fashion.

This means having rules the computer can
carry out and the person can remember.

This means having basic operations that
can be built into bigger operations (routines,
subroutines, subprograms, programs}.

Thus a computer language is really
a method by which a user can tie these
programs together. Computer languages
are built according to contrived sets of
rules for tying programs together. Such
rules are limited only by the imagina-
tion of their contrivers. Each computer
language has its own contrived system of
rules, and it may be completely different
from the contrived rules tying together
any other computer language. (That's one
reason for here presenting three differ-
ent computer languages, to show some of
the mad variety that can exist.)}

Computer languages tend to look like
nothing else you've ever seen., Thus com-
puter programs, which of course have to
be written in these computer languages,
look pretty weird. Some programs look
like old train schedules (in nultiple
columns) . Sceme look a little like prin-
ted poetry. In any case, a COMPUTER DPRO-
GRAM NO MORE LOOKS LIKE ITS RESULT THAN
THAN THE WORD "COW" LOCKS LIKE A COW.

One of the central concepts of this
book is that of a' "program follower,” a
dynamic entity which somehow follows a
program. Well, EVERY LANGUAGE HAS A PRO-
GRAM FOLLOWER FOLLOWING ITS OWN PARTI-
CULAR RULES. These rules are contrived
for cenvenience, suitability to a purpose,
and “aesthetics” of a sort-- often some
form of stark compression. (The progranm
followers wired into computers are some
what more akin to one another; see "Rock
Bottom,”™ p. 32.) About all we can say
languages have in common is: EVERY COM-~
PUTER LANCUAGE ALLOWS LOOPS, TESTS AND
BRANCHES, AND COMMUNICATION WITH EXTERNAL
DEVICES, as mentioned on p. 11. Beyond
that the differences are incredible.

So the basic secret of computer pec-
ple is this: it's not that the necessar-
ily know so much, but they can adapt to a
whole new world of possibilities more
quickly.

PR (e 8

PROGRAMS VS. SYSTEMS: .)
A Vague Guideline to a Vague Distinction

A "program" runs on an ordinary computer, without
necessarily interacting with the outside world;

a "system” involves a whole setup, of which the computer
and a program in it are just the central things.

THREE
Co

ONPUTER LANGUY
For_YoJ

Everyone should have some brush with
computer programming, just to see what it is
and isn't. What it is: casting mystical spells
in arcane terminology, whose exact details
have exact ramifications. What it isn't: talking
or typing to the computer in some way that re-
quires intelligence by the machine. What it is:
an intricate technical art. What it isn't: science.

Why three languages? Because onc would
look too much alike. Only by perusing several
do you get any sense of the variety they take.

These three languages make it possible
in principle for you to learn computers
with no coaching. All you need (in princi-
ple) is your own terminal, and time-sharing
accounts with firms running BASIC (most of
them do), TRAC Language (for availability
see p. 21), and/or APL (for partial list of
sources see p. 25).

Why these three? Several good reasons.
One, they can be used from a terminal, which
means that you could in pringiple get a terminal
in your heme and play with the computer from
over the telephone. But this is expensive,
and at worst fraught with accidental financial
liabilities, so the possibility is minor right now.
Nevertheless, it should be practical and inex-
pensive fairly soon.

Input to computers
is much easier
frem interactive terminals.

A computer language is a system for tying
together the fundamental operations of
computers for larger tasks. Each computer
language fits together according to its
own principles, based in part on the per-
sonality and preoccupations of the person
or people who designed it.

Modern computer languages generally can
handle all the main kinds of programming:
text handling, nuasber crunching, storing

files on disk memory and getting them back,

and controlling whatever external devices
von may have.
way or other.

In this book we will try to give you a
smattering of all these.

Even making pictures in some

These languages have been chosen be-
cause they are important, very different
from each other, very powerful, influential
and highly regarded in the field, interac-
tive from time-sharing systems, and very
suitable for making interactive programs
and ''good-guy systens.'

Each way be used to create programs
for science, business or recreation.

Because these languages can be used
from a terminal, and thus learned quickly,
we might call them Quickie languages.

Note: interactive languages mean you,
the programmer, can change your progran
from the terminal; interactive progr
are those which interact with users, ch
is different. However, these languages are
quite suitable for both.

Another reason for these three: they
represent, in a way, several major types.

BASIC is a widespread and fairly standard
language-- that is, it is available on computers
everywhere. Moreover, it looks rather like
Fortran, which is the most important "scientific"
computer language.

TRAC Language, though well-known among
researchers, has mighty powers that are not so
well known. Moreover, it achieves its pow—ers
through the simple and highly consistent following
of & few simple principles, and is thus both very
easy to learn and an elegant intellectual triumph
for its inventor.

Moreover, it is a so-called “list language,"
meaning that it can handle information Raving
extremely varied and changing form-- a very
important feature to those of us interested in
computer applications like picture-making and
text handling, which use amorphous and busy +
types of data. (See "Data Structures,” pp.2 §.)

APL is another elegant language. also
worked out handsomely from certain basic ideas
by a very thoughtful and inspired inventor,

To 4Fron,

Mt CompRrER

The best way to
and

And you just try stuff.

In the contemplation of these three lan-
guages you may begin to see the influence of
the individual human mind in the computer field,
quite contrary to the stereotype. [would like
to stress here that each of these three languages
represents somebody's individual personal ach-
ievement, and is in turn a foundation upon
which others, writing programs. can build
their own.

Two of thesc languages permit the
creation of interactive programs that work
on a line-by-line basis; in addition, TRAC
Language (pp. 18-21) permits the creation
of systems that react to anv character the
user types in, rather than waiting for the
carriage return at the end of a line. This
permits you to program user-level systems
that are even wmore responsive.

IF YOU'RE SCARED. Don't worry, it's
not a test. Flip the pages and look at the exam-
ples. (In particular, you might look for the
same program which appears in each language:
a program to cause the computer to print
"HELP, I AM TRAPPED IN A LOOP" forever.)

This book is organized so you can look
at it or skip it in any order. so there is no
particular reason you have to fight through
the next three chapters if you want to press on.
But if you want to study these languages. by all
means do so.

Languages that can be used from a terminal
are called on-line languages. There are a num-
ber of other popular on-line languages: JOSS
(the original), FOCAL, LOGO, SPEAKEASY. I'm
just sorry there's no room for them here.

Some popular non-interactive languages
are briefly described on pp. 30-31.

Wi

w L
~
%&2
e
Tluf;snaum

0 start programming is to have a terminal running an intetactive language
a friend sirting nearby who already knows the language and has something else to do
but can he interrupted with questions.

Till more and more you get the feel of it.

And £ind vourself writing programs that work.

THE BEST WAY “To LEARN.

THkee Qucke @H/WT&V[% es:
B&s{c,dv.“qz)
TRACS LavvaJe p. 18-21)
AL (p. 22-5).

|

"(ompuree AT {p1voRS"

The Moving Finger writes; and, having writ,
Moves on: nor all your Piety nor Wit

Shail lure it back’to cancel half a Line,
Nor all your Tears"wash out'a Word of it.

Khayyam/Fitagerald

Numerous interactive programs exist for
editing text at computer terminals-- in other
words, for doing what Magic Typewriters do, but
using a computer instead of a small special-
purpose machine.

Unfortunately most of these systems arc
dreadful. Dreadful, that is, for ordinary
human beings., What computer people seem to
think of as appropriate systems for handling
text are totally unsuitable for people who care
and think a lot about text, although they may
be good for Computer programmers.

Such systems allow you to insert text
(with some difficulty), delete (with some dif-
ficulty), and rearrange (maybe).

Ordinarily the user must learn an explicit
command language, some system of alphabetical
commands that have to be typed in to effect any
change in the material. Programmers think this
is good for you and toughens the mind.

The text is usually

puter's core memory.

The program generally gives the user an in-
i a marker specifying what point
in the text the program is currently concerned

aginary '"pointer,"

with.

What is the pointer for?
the operations are to take place.

example. If text is

storcd as a series of
alphabetical and punctuation codes in the com-
The area it occupies in
the core memory is called a core buffer. end.

In this simplificd illustration, the poin-

e

ter can be
text by various comnands,
pointer to the beginning., "' takes it to the
moves it to the beginning of the line

moved forward and backward in the

Typing "&'" moves the

it's presently on, and the commands "C" and "L,

positions.

3C

It specifies where =40

"Insert,'" for 2L

inserted, it will go into -2L

the place presently pointed at.

and so0 on.

when given with numbers, tell the pointer to
move forward or back the specified number of
For instance:

Move forward 3 characters
Move backward 4 characters
Move forward 2 lines
Move backward 2 lines

Note that these operations are not

Many of the commands are concerned with con-
trolling the current position of the pointer,
moving it backward or forward by a specific num-
ber of characters (including punctuation marks
and spaces) or lines (known to the program by the
carriage-return codes interspersed in the text).

COMPUTER ~STYLE TEXT SYSTEM.
A bock of Tea]”

bt e bAer
and wlff Ay “comimnds uDVM 40.
ESQ@®NW®D@M@646W@
2 ey o€ -x 5‘1,“ PR
cFORNAFDLG oo® ME I/

L

- - NN e s e T A N \
iL“ma = NN E A AR A ARG T z

2f @R rRREOFARRTE
@117z Thelo,

god-given, but that the particulars of how they
behave and work together are determined by the
personal quirks of who programmed them.

Another feature many of these programs have
is called a "context editor" feature. So-called
context editing moves the pointer from its pre-
sent position to the next occurrence of a speci-
fic string of characters: for instance, the next
occurrence of the word CHIAROSCURO. 0Often such
commands permit you, by giving the command prop-
erly, to replace any given word or phrasec with
any other. It was drily remarked at a recent
conference that this would allow a writer to
change every occurrence of "or" in his writing
to "and." Yet progranmers seem to think this is
a feature writers want.

(For programmers' purposes this is a very
good facility; indeed, a whole computer language,
SNOBOL, is built around it; -- see p. 31. But
it has nothing to do with normal text.)

This type of thing is totally unsuited for
the literary types of people who care most about
text and its characteristics (connotations,
twists) which can not be found by definable
structured search. And who should not be forced
to deal with explicit computer languages because
it tends to interfere with the thought processes
they are supposed to be pursuing, if not make
them physically ill.

YOUR FIRST COMPUTER LANGUAGE:
DARTMOUTH'S

BASIC

The BASIC language, also called Dartmouth-Basic,
was introduced in the sixties at Dartmouth College by John
Kemeny and Thomas Kurtz. It was intended to be a simple
and easy-to-learn introduction to computer programming,
yet powerful enough to do useful things. It has grown in
use, in recent years, both as the foremost beginner's language,
and as a perfectly fine language for doing many simple
kinds of work-- like custom business applications, statistics,
and "good-guy" systems for nai. : users as discussed elsewhere
in this book.

Kemeny is now president of Dartr.outh, and Kurtz
runs their high-power time-sharing computer center, so
BASIC has a permanent home base there.

Note that the name BASIC does not refer to the bottom-
level or elemental languages of computers. BASIC has
been contrived specifically to make programming quicker
and easier. It is not "basic” to all computers; such bottom
languages are called "machine ianguage" or "assembler

"
language" (see pp'JZ—K).

The simplicity of the language begins at the program
input, or editing, level. Each command of BASIC must
be on a separate line, and each line must have a separate
line number. Suppose you accidentally type in

50 IMPUGN Y

when you meant "INPUT" instead of "IMPUGN." You may
replace that command at any time by typing the same line
number and the new version of the line,

50 INPUT Y

which automatically replaces the previously line 50. If
you want to get rid of the line entirely, you type

50
and an end-of-line code, and the whole line is gone.
Example of a BASIC command:
- 153 LETX=Y

You can choose any line numbers you want, but the lines
are gutomatically put in the order of their numbers. Since
when you write a program you don't usually know at the
outset what it will look like later, you try to leave enough
gaps in the numbers at the start to fit in the instructions
you might want to put between them later.

THE SETTING

To begin with, there must be a computer, and it
must have a processor for the BASIC language, that is,
a program for carrying out the operations of Dartmouth-
BASIC. We will assume that this BASIC processor is all
set up in core memory ready to go.

(Note: This is how it looks -
in a minicomputer. On

a time-sharing system there's
a lot of irrelevant other

stuff going on, which we'll
leave out.)

And we will assume, as previously mentioned, that you

have some kind of a terminal-- that is, a device with a keyboard,
some kind of place the computer can send messages to you

and vice versa, and is more or less standard.

Now then: all that is needed is for you to understand
the BASIC language, and you can program this computer
within the confines of BASIC.

=p-It is one of the strange aspects of this field that
languages can be taught independently of discussions of
the machine itself.

When you type in a program, the BASIC processor
will do certain things to it (actually cook it down) and store
it in core memory:

Qore memory
SASIE

rro eessor

Your prog rain

vavsed

Every time you change one of the lines of the program the
BASIC processor will insert, delete or replace lines as

you have commanded, then rearrange whatever's left accordingly,

in order of the line numbers.

Then when you tell the processor to start the program,
by typing (with no line number)

RUN
the processor will start the program going at the command
with the earliest line number, and your instructions will

be executed according to the rules of BASIC.

Now we will consider some of the commands (or statements)
of BASIC.

These two boys had never seen a computer before,
but [loaded it up with the BASIC language processor,
showed them a few basic commands and told them to
turn it off when they were through.

1 got back ten hours later and they were still at it.

Too bad kids have such short attention spans.

_—*—_AT_

VARIABLES

The BASIC language, like a number of other languages,
allows you to set aside places in core memory and give
them names. These places may hold numbers. They can
be used to count the number of times that things are done
(or not done), to hold answers, numbers to test against,
numbers to multiply by and so on.

In BASIC, these places are given names of one alphabeti-
cal letter. That means you can have up to 26 of them.
Examples:

A E I O U sometimesY evenX

Because these named spaces in memory may be used
something like the way letters are used in algebra, we
call them variables. In fact, each one is a place with a
name.

(uu«_)

LAl

(memery st Actua| addvess eould ba
13, 4632 ov wlatever)

e~
g:::\qs\—\‘\}

If you use the names B,C and D for variables in your
program, the BASIC processor will automatically set up
places for them to be stored.

oore wenar? .

BASte
ProtessoR

o njw

T'»',’.'...ugi

vsed

The END command
The END command in BASIC simply consista of the
word END. It must come last in the program. Therefore
it must have the highest line number. Example:
99 END
The PRINT command

Whenever the program follower gets to a PRINT command,
it prints out on the terminal whatever is specified. Example:

87 PRINT "HAIL CAESAR. BIRD THOU NEVER WERT"

When and if the program follower gets to this command,
the terminal will print out

HAIL CAESAR. BIRD THOU NEVER WERT
The GOTO command (pronounced "Go 2")

The GOTO command tells the program follower the
number of the next command for it to do, from which it
will go on. Example:

62 GOTO 99

which means that when a program follower gets to command
#62, it must next jump to 99 and go on from there, unless
that happens to be the END statement.

A SIMPLE SAMPLE PROGRAM
These are enough commands to write a sample program.

43 PRINT "HELP, I AM CAUGHT IN A LOOP"
67 GOTO 43
68 END

The program will start at the first instruction, which
happens in this case to be instruction number 43. That
one prints a message. The next command, by line number,
is 67. This tells the program follower to go back to 43,
which it does.

E]\/)gf 43 PRINT "HELP, I AM CAUGHT IN A LOOP" (——{
67 GOTO 43

68 END
The result is that your terminal will print

HELP, I AM CAUGHT IN A LOOP
HELP, I AM CAUGHT IN A LOOP
HELP, I AM CAUGHT IN A LOOP

interminably, or until you do something drastic. It never

gets to the END statement. (Two strategies for doing something
drastic are usually to hold down the CONTROL button and

type C, or hold down both CONTROL and SHIFT buttons,

if you have them, and type P. One of these usually works.)

The LET command

The LET command puts something into a variable.
Example:

43 LETR=2.3

What is on the right side of the equals sign in the last statement,
in this case 2.3, is stuffed into whatever location of core
memory is designated on the left side, in this case a place
known to you only as R. With the result that someplace

in core memory is

The LET statement is an example of an assignment statement,
which most computer languages have; an assignment statement
assigns a specific piece of information (often a number,

but often other things) to some name (often standing for

a particular place in core memory).

The LET command in BASIC can also be used to do
arithmetic. Example:

14 LET M =2.3+ (12%7999.1)

(The asterisk has to be used for multiplication because

traditionally terminals don't have a times-sign.) BASIC
will work this out from right to left and store the result
in M.

The INPUT command

The INPUT statement asks the person at the terminal
for a number and then shoves it into a variable. Example:

41 INPUT Z

which causes the terminal to type a question mark, and
wait. When the user has typed in a number followed by
a carriage return, the BASIC prc stuffs the b
into the variable and proceeds with the program. Here
is a program using the INPUT statement.

Bogam

WA
hert.

10 PRINT "HOW OLD ARE YOU"

15 INPUT A

20 LET B=A/40.0

25 PRINT "YOUR AGE IS", B, "TIMES THE AGE
OF THE EMPIRE STATE BUILDING."

30 END

This will cause the following to happen:

Program types:
HOW OLD ARE YOU? 3.9
ier
Program types:
YOUR AGE IS ,5 TIMES THE AGE OF THE EMPIRE
STATE BUILDING.

The IF command

The IF command is a way of testing what's stored
in a variable. Example:

88 IF M = 40 then 63

This tests variable M to see if it contains the number 40.

If M is indeed 40, the program follower jumps to line 63.

If not, it goes right on and takes the next higher instruction
after 88. The IF can test other relations than equality,
including "less that," "greater than," "not equal," "less
than or equal to," etc. For instance,

89 IF Q 7then 102

will send the program follower to command 75 if variable

Q contains a number less than 7. (Note that different BASICs
for different computers may have slightly different rules
here.)

The BASIC language, developed at Dartmouth, must not be
confused with the underlying binary languages of individual
computers (see "Rock Bottom,” p.32%). These underlying
codes are called "machine languages" (or, in a dressed-up
form, easier to use for programmers, "assembler language").
These are the basic languages, different for each machine.
Dartmouth BASIC, or jut plain Basic, is a widely available,
standardized, simple beginner's language.

—e———

ANOTHER PROFOUND EXEMPLARY PROGRAM

2 LETZ=25
E}g‘f 10 PRINT Z, " BOTTLES OF BEER IN THE WALL"

15 LETZ=2Z-1
r---62 IF 2= 0GOTO 74
Y 63 GOTO 10 —
“->174 PRINT "TIME TO GO HOME."
75 END

The program will start typing thusly:

25 BOTTLES OF BEER IN THE WALL
24 BOTTLES OF BEER IN THE WALL

and so on, until Z has reached 0; then it will type

0 BOTTLES OF BEER IN THE WALL
TIME TO GO HOME.

and then it will stop.

You will note that this program, like the one that
printed "HELP, I AM CAUGHT IN A LOOP," has a loop,
that is, a repeated sequence of operations. The first one
was an endless loop, which repeated forever. This loop,
however, is more well-behaved (by some people's standards),
in that it allows an escape when a certain criterion has
been reached-- in this case, printing a line of text 25 times
with variants.

The reason we are able to escape from this loop is
that we have a test instruction, IF statement number 62.

It is very important for the programmer to include
tests which allow the program to get out of & loop. This
may be couched as a motto, viz.:

LEAK BEFORE YOU LOOP.

AN AUTOMATIC LOOP

Indeed, for people who are big on program loops,
BASIC provides a pair of instructions which handle the
program loop completely. These are the FOR and NEXT
instructions. We won't show them here, but they're not
very hard. Using the FOR command, you can easily direct
the computer to do something a million and one times, say .
This can be exhilarating. You can even direct it to include
that program in something to be done a billion times, resulting
ina program loop that would be carried out over a trillion
times. All in a short program! But of course this is just
power on paper; we want our programs to be useful, and
finish their jobs in the present century, and so such flights
are just mental exercises.

FAST ANSWERBACK WITH BASIC (in some versions)

If you want a fast answer to a numerical question,
you can do it without the line numbers. typing in

PRINT 3.1416 * 7124

will cause BASIC to print the answer right out and forget
the whole thing.

TEXT STRINGS IN BASIC

The deluxe versions of the Dartmouth BASIC
language have operations for handling text--
or what computerfolk call "strings," that is,
strings of alphabetic characters and punctuation.
These operations tend to begin with $ (standing
for "$tring"?) and there's no room for them here.

But what they mean is that BASIC can type
letters, count the nouns in Gone With The Wind,
or print out the nine hundred million names of
God.

If you write the program.

THIS IS A SERIOUS LANGUAGE,
AND CAN SAVE SOME COMPANIES A LOT OF MONEY

BASIC is a very serious language. Advanced versions
of BASIC have instructions that allow users to put in alphabetical
information, and store and retrieve all kinds of information
from disks or tape. In other words, BASIC can be used
for the fairly simple programming of a vast range of problems
and "good-guy systems" mentioned elsewhere. Complete
BASIC systems allowing complex calculations can be had
for perhaps $3000; a general-purpose computer running
BASIC with cassette or other mass storage, for business
or other purposes, can now be had for some $6000. Allowing
& few thousand dollars for programming specific applications
in BASIC, simple systems can be created for a variety
of purposes that some companies might say you needed
a hundred-thousand-dollar system for.

This is serious business. Languages like BASIC
must be considered by people who want simple systems
to do understandable things in direct ways that are meaningful
to them, and that don't disrupt their companies or their
lives,

This has been a very hasty and brief presentation
in which I have tried to convey the feeling of this important
langusge. If you have the chance to learn it, by all means
do.

SOME FUN THINGS TO TRY IN BASIC
Write a program that prints calendars.

Write a program that converts an input number to
Roman Numerals.

Write a dialogue system that welcomes the user to
the sanitarium, asks him questions, ignores the answers
and insults him. (Use the INPUT statement for receiving
numerical answers. Since the answers are ignored they
can all be stored in one variable.)

WHERE TO GET IT

(Features of the BASIC language vary considerably
from system to system. Which ones offer the highly desirable
alphabetic commands and mass storage have to be checked
out individually .)

BASIC is offered on many if not most time-sharing services,
so you can use it from your home on a terminal. (But note that
this can be expensive and even dangerous, if you're paying
yourself; there are not presently adequate cost safeguards to
prevent you from running up huge bills.)

BEST BUY? Rumors persist of a time-sharing service
somewhere that offers BASIC for $5 an hour, total, with disk
storage thrown in. 1 have not been able to verify this.

DEC offers minicomputer-based systems which time-
share BASIC among several terminals simultaneously. (But
you have to buy the whole big system.) The ones that
run on the PDP-8 are marketed mainly to schools, and for
this reason are called, somewhat peculiarly, EDUSYSTEMS
Their multiterminal system for the PDP-11 is called RSTS
(pronounced "Risstiss,") and is marketed mainly to businesses.

Hewlett-Packard offers BASIC, I believe, on all of
its minicomputers. Of special interest is an odd computer
called the Series 9800 Model 30. You're only allowed to
program in BASIC. (t's actually a microprocessor; see

p-19

Many other minicomputer manufacturers now offer
BASIC. Data General's NOVA is one.

BIBLIOGRAPHY
Kemeny and Kurtz, BASIC Programming. Wiley, 1967.

DEC's Edusystem Handbook is a very nice introduction
to BASIC, quite pleasant and whimsical; it may be
& good introduction even if you're using other people's
BASIC systems. It's $5 from DEC, Communications
Services, Parker St., Maynard, Mass. 01754.

There is also a programmed text on BASIC by Albrecht
(published by Wiley). For those of us who freeze
at numerical-looking manuals, programmed texts
can take away a lot of anxiety.

MY COMPUTER LIKES ME (when 1 speak in BASIC).
This book has evidently been put together by the People's
Computer Company , and has some idealistic fervor behind it.
$1.19 from Dymax, Box 310, Menlo Park, Cal. 94025.

BASIC is a good example of an "algebraic" type of
language, that is, one formulated more or
less to look like high-school algebra and
permit easy conversion of certain algebraic
formulas into actual runnable programs.
The most widely-used language of this type is
FORTRAN (see p.3|). Thus BASIC is
often referred to as a "Fortran-type language.”
The kickeroo-- and if you understand this it's half
the battle-- is that a line of BASIC or FORTRAN
directs a certain event to take place, while
a statement in algebra just describes relations.
The strange resemblance between the descriptive
language (algebra) and the prescriptive
language (Fortran or Basic) is that algebraic
operations (which are just recombinations
and restatements) can be mimicked by the
computer language, and this early obsession
of mathy computerfolk led to making the
computer language look like a descriptive
algebra. Especially with the weird use of
the equals-sign to mean "is replaced now by."
In hindsight this was a ridiculous idea;
some of the more recent languages (Such as
APL) use a left-pointing arrow instead of an
equals-sign, showing that an action is being
called for, rather than a relationship being
described.

17

ARRAYS
an nnroﬂ}wt iﬁyﬁﬁkﬁuﬁL

(available in BASIC, APL and many other languages)

Arrays are information setups with numbered
positions. The positions can contain all sorts of
different things, however: numbers, letters or
other data, depending on the data structures
allowed in the language.

ONE-DIMENSIONKL ARRRY

P2 3y & (- k(1)
S .

TWo -DIMENTS 1O NKL ARKey

12 hi W

4
z

ni
"

THREE ~ DIMENSIONKL ARRAY

A one-dimensional array is like a row, a two-
dimensional array is like a tabletop, a three-
dimensional array is like a box, and for more
dimensions you can't visualize.

Arrays are handy for working with a lot of
different things one at a time. They can be given
names just like variables.

Suppose you have a one-dimensional array
named SAM. Then in a program you can usually
ask for the third element in SAM by referring to
SAM(3). Better than that: you can refer by turns
to every element of SAM by using a counting
variable and changing its value. SAM(JOE) can be
any one of the elements of the array, if we set the
value of JOE, the counting variable, to the number
of the position we want to point to.

For arrays having more than one dimension,
the principle is the same. You may refer in a
program to any space in the array by giving a
number in parentheses, or subscript, specifying
the space's position in each dimension. Suppose
you have an array named PRICES, which gives
the prices of, say, various sizes and brands of
TV sets.

Yoor Arra 9" diag.
1A 12"
FK < 245 13"
19"

Mfr. Mfr. Mfr. Mfr. Mfr.
1 2 3 4 5

This is PRICES (3,2)
because it's the item in row 3, column 2.

Suppose you have a two-dimensional array
giving the telephone numbers, salaries and ages
of several different employees of a company. You
have decided to call the array WHAM.

S ¥
g s
P T
b N

Tel.no.

Salary e

Age

You can refer to any single entry in this array as
WHAM (IRV,JOE), where IRV and JOE are two
counting variables you've decided to set up.

If you set IRV and JOE both to 1,
WHAM (IRV,JOE) is really WHAM(1,1), which
refers you to the telephone number of employee A.
If you change JOE to 2, that gives you WHAM(1,2),
giving you B's phone; while WHAM (2,1) would be
A's salary.

These are just the mechanics. What you
choose to do with this sort of thing is your own
affair. Counting around in arrays (and core
memory ., where they're stored) is called indexing.

HE SLEEPING GIRNT

TRAC bujvt}e

A mild-mannered man in Cambridge, Massachusetts,
who owns his own very small business, is the creator of one
of the most extraordinary and powerful computer languages
there is, though lots of people in the field don't realize it.
The language is fairly well-known among professionals, but
its real power is hardly suspected.

If BASIC is a fairly conventional programming language,
strongly resembling FORTRAN, TRAC (Text Reckoning and
Compiling) Language is fairly unusual.

The name of it is "TRAC Language, " not just TRAC —
because it's a registered brand name {like Kleenex Tissues).
Within the rules, the word "TRAC" is an adjective and not a
noun. Thus TRAC is its first name, Language is its last; so
we can refer to "TRAC Language' instead of having to
precede it with the.

It is included here for several reasons.

1) 1t is extremely easy to learn, at least for beginners.
Experienced programmers often have trouble with it.

2) It is extremely powerful for non-numeric tasks. In
fact, it is ideal for building your own personal language.

3) It offers perhaps the best control of mass storage,
and your own style of input-output, of any language.

4) It is superbly documented and explained with the new
"The Beginner's Manual for TRAC Language,’ which is now
available.

5) It is likely to catch on one of these days. (Some
large corporations have been investigating it extensively.)

It is not so much the basic idea
of TRAC Language, but the neatness
with which the idea has been elaborated,
that is so nice.

As a side point, here is an
important motto for thinking in general
about computers (and about other things
in general):

MAKING THINGS FIT TOGETHER WELL
TAKES A LOT OF WORK AND THOUGHT.

Let Calvin Mooers' TRAC Language be a
shining example.

TRAC Language is great for creating highly interactive

systems for special purposes, including turnkey systems for

inexperienced users and "good-guy" systems. It combines

this with good facilities for handling text, and what is needed

along with that, terrific control over mass storage. It is

also excellent for simulating complex on-off systems; rumor

has it that TRAC Language was used for simulating a major
computer before it was built.

Against these advantages we must balance TRAC
Language's less fortunate characteristics. For numerical

operations it is extremely slow, if not terrible, compared to

the most popular languages. The same applies to handling

numerical arrays and controlling loops, which are compara-

tively awkward in TRAC Language.

Finally, many programmers are incensed by the
number of parentheses that turn up in TRAC programs; in

this it resembles the language LISP. But this is an aesthetic

judgement.

The TRAC Language has been thought out in great
detail for total compatibility of all parts. (Moreover, by
standardizing the language exactly, Mooers heroically
assures that programs can be moved from computer to
computer without difficulty.)

* TRAC is a registered service mark of Rockford Research,

Inc. Description of TRAC Language primitives adapted by

permission from "TRAC, A Procedure-Describing Language
for the Reactive Typewriter', copyright © 1966 by Rockford

Research, Inc.

I am grateful to C.A.R. Kagan, of Western Electric
Engineering Research Center, for his extensive
(and finally successful) efforts to interest me in
TRAC Language.

In the well-thought-out ramifications of its basic concept,
the TRAC Language is so elegant as to constitute a work of
art. It beautifully fulfills this rule:

v, .. the facilities provided by the language should be
constructed from as few basic ideas as possible, and
... these should be general-purpose and interrelated
in the language in a way which avoided special cases

wherever possible."” (Harrison, Data-Structures and
Programming, pub. Scott, Foresman, p. 251.)

The fundamental idea of TRAC Language, which has
been worked out in detail with the deepest care, thought and
consistency, is this:

ALL IS TEXT.

That is, all programs and data are stored as strings of
characters, in the same manner. They are labelled, stored,
retrieved, and otherwise treated in the same way, as
strings of text characters.

Data and programs are not kept in binary form, but
remain stored in character form, much the way they were
originally put in. The programs are examined for execution
as text strings, and they call data in the form of text strings.

This gives rise to certain interesting kinds of
compatibility.

a) Complete compatibility exists in the command
structure: the results of one command can become another
command or can become data for another command.

ALMOST NOTHING CREATES AN ERROR CONDITION.

If enough information is not supplied to execute a command,
the command is ignored. If too much information is supplied,
the extra is ignored.

b) Complete compatibility exists in the data: letters and
numbers and spaces may be freely intermixed. Special
terminal characters (like carriage returns and backspaces)
are handled just like other characters, giving the program-
mer complete control of the arrangement of output on the
page.

¢) Complete compatibility also exists from one computer
to another, so that work on one computer can be moved to
another with ease. By the trademark TRAC, Mooers
guarantees it — an innovation.

COMMAND FORMAT

A TRAC command has the following form. The cross-
hatch or sharp-sign is the way this language identifies a
command's beginning.

#(NM, arg2, arg3, arg4,..)

NM is the name of any TRAC command. It counts as the
first "argument, ' or piece of information supplied. Arg2,
arg3, etc. are whatever else the command needs to know to
be carried out.

We will look first at examples that use the arithmetic
commands of TRAC Language, not because it is particularly
good at arithmetic, which it isn't, but because they're the
simplest commands. The arithmetic commands are AD
(add), SU (subtract, ML (multiply), DV (divide). Each
arithmetic command takes three arguments, the command
name and two numbers. Examples:

#(AD, 1, 2)
is a command to add the numbers 1 and 2.

#(SU, 4, 3)
is a command to subtract the number 3 from the number 4.

#(ML, 632, 521)
is a command to multiply 632 by 521.

#(DV, 100, 10)
is a command to divide 100 by 10.

Now comes the interesting part.

The way TRAC commands may be combined provides
the language's extraordinary power. This is based on the
way that the TRAC processor examines the program, which

is a string of character codes. Watch as we combine two
AD instructions:

#(AD, 3, #(AD, 2,5))
The answer is 10. Miraculous!

How can this be?

r A comma ends an argument
in the TRAC language?
Ah, that all arguments
could be ended so easily.
--My grandfather.

THE MAGIC SCAN

The secret of combining TRAC commands is that
every command, when executed, is replaced by its answer;
and whatever may result is in turn executed.

There is an exact procedure for this:

SCAN FROM LEFT TO RIGHT

UNTIL A RIGHT PARENTHESIS;
RESOLVE THE CONTENTS OF THE

PAIRED COMMAND PARENTHESES

(execute and replace by the command's result);
STARTING AT THE BEGINNING OF THE RESULT,
KEEP SCANNING LEFT-TO-RIGHT
UNTIL A RIGHT PARENTHESIS. 7

WHEN YOU GET TO THE END, PRINT OUT
WHAT'S LEFT.

The beauty part is how it all works so good.
An arithmetic example — so you get the procedure.

first right parenthesis
found.

L,N\J execute what's in the

command parentheses

7 & replace
with their answer, leaving:

#(AD, 2, #(AD, 3, 4))
Y

#(AD, 2,7)

I scan to next right parenthesis
"

v“?’\-J execute & replace

find no more parentheses
print out what's left.

You might try this yourself on a longer example:
#(AD, #(SU, #(AD, 3,4), #(8U, 7, 3)), 1)
Here is an interesting case:

#(AD,1)

There's no third argument to add to the 1 — bu! that's
okay in TRAC Language. 1 it remains.

PULLING IN OTHER STUFF
The core memory available to the use is divided into

two areas, which we may call WORKSPACE and STANDBY.

(ML, (4D, 7,90, 465U, 16,9) |

WORKSPACE |

L Strings with Names {

The Standby area contains strings of characters with names.
Here could be some examples:

names strings
LD

[naRor ol .
(54321

ISUE]
)

[PROGRAM|—

[FPS, HELP: T AM TRAPPED IN A LOOP)#(CL, PROGRAM)]

GALOSHES

| MUSTN'T FORGET MY GALOSHES. |

There is an instruction that moves things from the
Standby area to the Workspace. This is the CALL
instruction.

#(CL, whatever)
The CALL instruction pulls in a copy of the named string
to replace it, the call instruction, in the work area. The
string named in the call instruction also stays in the Standby
area until you want to get rid of it. Example:

#(CL, HAROLD)
would be replaced by

54321
Suppose we say in a program

#(AD, 1, #(CL, HAROLD))
Then the result is:

54322

Now let's do a program loop using the CALL. If we
type in to our TRAC processor

#(CL, PROGRAM)
it should type
HELP; I AM TRAPPED IN A PROGRAM LOOP
HELP; I AM TRAPPED IN A PROGRAM LOOP
HELP; I AM TRAPPED IN A PROGRAM LOOP
indefinitely.

Why is this? Let's go through the steps.

We noted that in our Standby area we had a string
named PROGRAM which consisted of

#(PS, HELP; 1 AM TRAPPED IN A PROGRAM LOOP)}#(CL, PROGRAM)

The TRAC processor scans across it to the first right parenthesis,

#(Ps, HB%PLI AM TRAPE

and now executes this.

It happens that PS is the PRINT STRING instruction.
PRINT STRING prints out its second argument, and forgets
the rest. But the only argument after PS is

ED IN A PROGRAM LOOP)#(CL, PROGRAM)
— ==

M' ’,'““”“'0’94 Caiv"i Mooen S-,;fs thlo a r‘oue ‘ea%)

fears opeu his Tormina/, and

(Powl)

IT'S SUPERLANGUAGE,

HELP; I AM TRAPPED IN A PROGRAM LOOP
so it prints that. If it had said

HELP, I AM TRAPPED IN A PROGRAM LOOP
the PRINT STRING command would only have printed

HELP
since a comma ends an argument in TRAC language.

Now, the PRINT STRING command leaves no result, so
it is vaporized; all we have left in the work area is

#(CL, PROGRAM)
)
which is now scanned. But that's another CALL, and when

it is executed by fetching the object called PROGRAM, its
replacement in the work area is

#(PS, HELP; I AM TRAPPED IN A PROGRAM LOOP)#(CL, PROGRAM)

and guess what. We done it again.

(Another example of TRAC Language's consistency:
suppose it executes the command

#(CL, EBENEZER)

when there is no string called EBENEZER. The result is
nothing; so that command disappears, leaving no residue.)

THE FORM COMMANDS

Let us be a little more precise. The Standby area
is really called by Mooers "forms storage, " and a string-
with-name that is kept there is called a form. One reason
for this terminology is that these strings can consist of
programs or arrangements that we may want to {it together
and combine. Thus they are "forms".

1. CREATING A FORM

To create a form, you use the DEFINE STRING
command:

#(DS, formname, contents)

The arguments used by DS give a name to the form and
specify what you want to have stored in it. Example:

#(DS, ELVIS, 1234)

creates a form named ELVIS with contents 1234.
ELv

SN

(Note that to get a program into a form without its being
executed on the way requires some preparation. For this,
"protection" is used; see end of article.)

It turns out that DEFINE STRING is the closest TRAC
Language has to an assignment statement (as in BASIC,
LET A = WHATEVER). If you want to use a variable A,
say, to store the current result of something, in TRAC
Language you create a form named A.

#4(DS, A, WHATEVER)

Whenever the value of A is changed, you redefine form A.

2. CALLING A FORM.
As noted already,
#(CL, ELVIS)

will then be replaced by
1234

But a wonderful extension of this, that hasn't been
mentioned yet, is

2A. THE IMPLICIT CALL.

You don't even have to say CL to call a form. If the
first argument of a command — that is, the first string
inside the command parentheses — is not a command known
to TRAC Language, why, the TRAC processor concludes
that the first argument may be the name of a form. So now
if you type

#(AD, #(HAROLD), 4(ELVIS))

it will first note, on reaching the right-paren of the
HAROLD command, that since HAROLD is 54321, you
evidently wanted this:

#(AD, 54321, #(ELVIS))

@ rescan of result
e
and then will do the same with ELVIS:
#(AD, 54321, 1234)
so that pretty soon it'll type for you

55555

This language is marvelously suited to data base management,
management information systems. interactive query systems,
and the broad spectrum of "business" programming.

For large-scale scientific number crunching, not so good.

With one exception: "infinite precision” arithmetic, when
people want things to hundreds of decimal places.

Chugga chugga.

This implicit call is the trick that allows people to create
their own languages very quickly. In not very long, you could
create your own commands — say ZAPP,MELVIN and some
more; and while at first it is more convenient to type in the
TRAC format

#{ZAPP, #(MELVIN))

it is very little trouble in TRAC Language to create new
syntaxes of your own like

ZAPP ! MELVIN

that are interpreted by the TRAC processor as meaning the
same thing.

2B. FILLING IN HOLES.
Another thing the CALL command in TRAC Language

does is fill in holes that exist in forms. Let us represent
a hole as follows:

L]

Now suppose there is a TRAC form with a hole in it, like
this.

{woRrD] Wl]

Additional arguments in the call get plugged into holes in

the form. Examples:

call result
#(CL, WORD) HT
#(CL, WORD. O) HOT
#(WORD, A) HAT
#(WORD, 00) HOOT

Now, a form can have a number of different holes.
Let us denote these by

(2] 12} (3] 14 ...
Now suppose we have a form

WORD
S "N nutzim)

which we might call numerous ways:

call result
#(WORD, W, I, E) WHITE
#(WORD, , 00, OWL) HOOTOWL

(Note that putting nothing between two
commas made nothing the argument. }

#(WORD, #(WORD, , 0)S, 0) HOTSHOT
Perhaps you can think of other examples.

This fill-in technique is obviously useful for program-
ming. If a form contains a program, its holes can be made
to accept varying numbers, form names, text strings,
other programs. Example: Suppose we want to create a
new TRAC command, ADD, that adds three numbers instead
of just two. Fair enough:

DN s
#(AD)UL‘#EA];)EL [_3@ and there you are.

This brings up another example of how nicely TRAC
Language works out. Suppose you have the following in
forms storage:

{zowg} B

@ipj\\l@mm[zm
S e
E— s 111,123

Try acting this one out with pencil and paper. Suppose you
type in

#(ZOWIE, 5, 7)

It happens that the arguments 5 and 7 will be passed neatly

from ZOWIE to ZIP to ZAP to the final execution of the AD;
all through the smooth plugging of holes by the implicit call
and the Magie Scan procedure of the TRAC processor.

mxummmumxuuuuuuuwmmamuﬂwm f0%080

TRAC Language is a so-called "list processing language” or
"List Language.” THis term has come to mean any language
for twiddling data having arbitrary and changing form.

Two other prominent languages of this type are SNOBOL and
LISP (see p. 31).

List languages are traditionally freaky.

20

Teac Language in

an interpretive language >
(each step carried out directly
by the processor without conversion
to another form first);

an extensible language
(you can add your own commands
for your own purposes);

a list-processing language
(for handling complex and amorphous
forms of data that don't fit in boxes
and arrays).

— It is one of the few such lan-

K guages that fits in little computers.

- TN A e

3. DRILLING THE HOLES

The holes (called by Mooers segment gaps) are created
by the SEGMENT STRING instruction.

#(SS, formname, whateverl, whatever2 ...)
where "formname' is the form you want to put holes in and
the whatevers are things you want to replace by holes.

Example: Suppose you have a form

INSULT
YOU ARE A CREEP

You make this more general by means of the SEGMENT
STRING instruction:

#(sS, INSULT, CREEP)

resulting in

INSULT]
YOU ARE A []

which can be filled in at a more appropriate time.

Fuller example. Suppose we type into the TRAC
processor the following:

#(DS, THINGY, ONE FOR THE MONEY AND TWO FOR THE SHOW)
#(SS, THINGY, ONE, TWO,)

note space

We have now created a form THINGY and replaced parts of
it with segment gaps. Since each of the later arguments of
SEGMENT STRING specifies a differently numbered gap,
we will have gaps numbered [1], [2], and [3]. The gap [1]
will have replaced the word ONE, the gap [2] will have
replaced the word TWO, and a lot of gaps numbered [3] will
have replaced all the spaces in the form (since the fifth
argument of SS was a space). The resulting form is:

THINGY
(1])(3]FOR[3] THE[3]MONEY[3]AND[3][2)[3] FOR[3] THE([3]SHOW

We can get it to print out interestingly by typing #(CL,
THINGY, RUN, HIDE) (since after the call, the plugged-in
form will still be in the forms storage.) This is printed:

RUNFORTHEMONEYANDHIDEFORTHESHOW

or perhaps, if we use a carriage return for the last
argument , we can get funny results. The call

;#(THINGY, NOT A FIG, THAT, [carriage return)

should result in

NOT A FIG
FOR

THE
MONEY
AND

THAT

FOR

THE

SHOW

In TRAC Language, every command %

is replaced by its result
as the program's execution proceeds.
This is ingenious, weird and highly effective.

NTIDISESTRRLISHMEN

=

TEST COMMANDS IN TRAC LANGUAGE

There are test commands in TRAC Language, but like
everything else they work on strings of characters. Thus
they may work on numbers or text. Consider the EQ
command (test if equal):

#(EQ, firstthing, secondthing, ifso, ifnot)

where "firstthing' and "secondthing' are the strings being
compared, and ifso and ifnot are the alternatives. If first-
thing is the same as secondthing, then ifso is what the
TRAC processor does, and ifnot is forgotten. Example:

#(EQ, 3, #(SU, 5, 2), HOORAY, NUTS)

If it turns out that 3 is equal to #(SU,5,2), which it is, then
all that would be left of the whole string would be

HOORAY
while otherwise the TRAC processor would produce NUTS.
To most computer people this looks completely inside-

test instruction. Others find this feature at-trac-tive.

DISK OPERATIONS

Now for the juicy disk operations. Storing things on
disk can occur as an ordinary TRAC command.

#(SB, name, form1, form2, form3 ...)

creates a place out somewhere on disk with the name you
give it, and puts in it the forms you've specified. Example:

#(SB, JUNK, TOM, DICK, HARRY)

and they're stored. If you want them later you say
#(FB, JUNK)

and they're back.

Because you can mix the disk operations in with every-
thing else so nicely, you can chain programs and changing
environments with great ease to travel smoothly among
different systems, circumstances, setups.

Here is a stupid program that scans all incoming text
for the word SHAZAM. If the word SHAZAM appears, it
clears out everything, calls a whole nother disk block, and
welcomes its new master. Otherwise nothing happens. If
you have access to a TRAC system (or really want to work
on it), you may be able to figure it out. (RESTART must
be in the workspace to begin.)

RES: !—{#(Ds, TEMP, #(RS))#(SS, TEMP,)#(RPT)

RPT

#(CS, TEMP, (#(RESTART)))

EVENT S
#(DAJ#(FB, MARVEL)#(PS, WELCOME O MASTER)

#(EQ, SHAZAM, #(TEST), (#(EVENT)))}#(RPT)

In this example, however, you may have noticed more
parentheses than you expected. Now for why.

PROTECTION AND ONE-SHOT

The last thing we'll talk about is the other two syntactic
layouts.

We've already told you about the main syntactic layout
of TRAC Language, which is

#()

It turns out that two more layouts are needed, which we may
call PROTECTION and ONE-SHOT. Protection is simply

()

which prevents the execution of anything between the
parentheses. The TRAC processor strips off these plain
parentheses and moves on, leaving behind what was in
them but not having executed it. (But it may come back.)
An obvious use is to put around a program you're designing:

#(DS, PROG, (#(AD, A, B)))
N/

safe
stripped stripped

but other uses turn up after you've experimented a little.
The last TRAC command arrangement looks like this

##()

and you can put any command in it, except that its result
will only be carried one level

##(CL, ZOWIE, 3, 4)

results in (using the forms we defined earlier),

#(Z1P, 3, 4)
e

which is allowed to survive as is, because the moving finger
of the TRAC scanner does not re-scan the result.

1t is left to the very curious to try to figure out why
this is needed.

/
"
Whatever can be executed T
is replaced by
its result.
This may or may not
yield something
which is in turn
executable.
When nothing left is executable,
what's left
is printed out.

That's the TRAC language.

FAST ANSWERBACK IN TRAC LANGUAGE

TRAC Language can be used for fast answerback to
simple problems. Typing in long executable TRAC expres-
sions causes the result, if any, to be printed back out
immediately.

For naive users, however, the special advantage is in
how easily TRAC Language may be used to program fast
answerback environments of any kind.

A SERIOUS LANGUAGE; BUT BE WILLING
TO BELIEVE WHAT YOU SEE

TRAC Language jis, besides being an easy language to
learn, very powerful for text and storage applications.

Conventional computer people don't necessarily believe
or like it.

For instance, as a consultant I once had programmed,
in TRAC Language, a system for a certain intricate form
of business application. It worked. It ran. Anybody could
be taught to use it in five minutes. The client was consider-
ing expanding it and installing a complete system. They
asked another consultant.

It couldn't be done in TRAC Language, said the other
consultant; that's some kind of a "university" language.
End of project.

HOW TO GET IT

There have been, until recently, certain difficulties
about getting access to a TRAC processor. Over the years,
Mooers has worked with his own processors in Cambridge.
Experimenters here and there have tried their hands at
programming it, with little compatibility in their results.
Mooers has worked with several large corporations, who said
said they wanted to try processors to assess the value of the
the language, but those endeavors brought nothing out to
the public.

FINALLY, however, TRAC Language service is pub-
lically available, in a fastidiously accurate processor and
with Mooers' blessing, on Computility™timesharing service.
They run PDP-10 service in the Boston-to-Washington
area. (From elsewhere you have to pay long distance.)

The charge should run $12 to $15 per hour in business hours,
less elsewhen. But this depends to some extent on what
your program does, and is hence unpredictable. A licensed
TRAC Language processor may be obtained from Mooers

for your own favorite PDP-10. Processors for other com-
puters, including minis, are in the planning stage.

TRAC Language is now nicely documented in two new
books by Mooers, a beginner's manual and a standardization
book (see Bibliography).

Since Mooers operates a small business, and must
make a livelihood from it, he has adopted the standard
business techniques of service mark and copyright to
protect his interests. The service mark ""TRAC" serves
to identify his product in the marketplace, and is an
assurance to the public that the product exactly meets the
published standards By law, the "TRAC" mark may not
be used on programs or products which do not come from
Rockford Research, Inc.

Following IBM, he is using copyright to protect his
documentation and programs from copying and adaptation
without authority.

Mooers also stands ready to accommodate academic
students and experimenters who wish to try their hands at
programming a TRAC processor. An experimenter's
license for use of the copyright material may be obtained
for a few dollars, provided you do not intend to use the
resulting programs commercially.

For information of all kinds, including lists of latest
literature and application notes, contact:

Calvin N. Mooers

Rockford Research, Inc.

140-1/2 Mount Auburn Street

Cambridge, Mass. 02138 Tel. (617)876-6776

o
—

TRAC® PRIMITIVES*

OUTPUT.
PS, string
PRINT STRING: prints out the second argument.
INPUT.
RS

READ STRING: this command is replaced by a string of
characters typed in by the user, whose end is signalled by a
changeable "meta' character.

CM, arg2
CHANGE META: first character of second argument becomes

c new meta character. May be carriage-return code.

R
READ CHARACTER: this command is replaced by the next
character the user types in. Permits highly responsive inter-
active systems.

DISK COMMANDS.
SB, blockname, forml, form2 ...
STORE BLOCK: under block name supplied, stores forms listed.
FB, blockname
FETCH BLOCK: contents 'of named block are quietly brought in
to forms storage from disk.

MAIN FORM COMMANDS.

DS, formname, contents
DEFINE STRING. Discussed in text.

CL, formname, plugl, plug2, plug3 .
CALL: brings form from forms storage to working program.
Plugl is fitted into every hole (segment gap) numbered 1,
plug2 into every hole numbered 2, andso on.

88, formname, punchoutl, punchout2 . ..
SEGMENT STRING: this command replaces every occurrence
of punchoutl with a hole (segment gap) numbered 1, and so on.

INTERNAL FORM COMMANDS.
(All of these use a little pointer, or form pointer, that marks a place
in the form. If there is no form remaining after the pointer, these
instructions act on their last argument, which is otherwise ignored.)
IN, formname, string, default
Looks for specified string IN the form, starting at pointer. If
not found, pointer unmoved. (NOTE: string search can also be
done nicely with the SS command.)
CC, formname, default
CALL CHARACTER: brings up next character in form, moves
pointer to after it.
CN, formname, no.of characters, default
CALL N: brings up next N characters, moves pointer to after
them.
CS, formname, default
CALL SEGMENT: brings up everything to next segment gap,
moves pointer to it.
CR, formname
CALL RESTORE: moves pointer back to beginning of form.

MANAGING FORMS STORAGE
LN, divider
LIST NAMES: replaced by all form names in forms storage,
with any divider between them. Divider is optional.
DD, namel, name2 .
DELETE DEFIN’ITION destroys named forms in forms storage.
DA
DELETE ALL: gets rid of all forms in forms storage.

TEST COMMANDS.
EQ, firstthing, secondthing, ifso, ifnot
Tests if EQual: if firstthing is same as secondthing, what's left
is ifso; if not equal, what's left is ifnot.
GR, f1rstth1ng, secondthing, ifso, ifnot
Tests whether firstthing is numerically GReater than second-
thing. 1If so, what's left is ifso; if not, what's left is ifnot.

OH YEAH, ARITHMETIC.
(All these are handled in decimal arithmetic, a character at a time,
and defined only for two integers. Everything else you write your-
self as a shorty program.)
AD
I?/IUL mentioned in text.

DI

BOOLEAN COMMANDS.
(Several exist in the language, but could not possibly be understood
from this writeup.)

* Description of TRAC language primitives adapted by permission from
"TRAC, A Procedure-Describing Language for the Reactive Typewriter, "
copyright © 1966 by Rockford Research, Inc.

BIBLIOGRAPHY

Calvin N. Mooers, The Beginner's Manual for TRAC® Language,
300 pages, $10 00, from Rockford Research, Inc.
(See "Where to Get 1t.')

Calvin N. Mooers, Definition and Standard for TRAC® T-64
Language, 86 pages, $5.00, from Rockford Research, Inc.

Calvin N, Mooers, "TRAC, A Pmcedure -Describing Language
for the Reactive Typewrlter, " Communications of the ACM,
v.9, n.3, pp.215-219 (March 1966). Historic paper, out of
print. This paper is copyrighted, and the copyright is owned
by Rockford Research, Inc., through legal assignment from
the Association for Comput ing Machinery, Inc.

And for those who want to understand the depth of the standardiza-
tion problem, Mooers offers freebie reprints of:

Calvin N. Mooers, '"Accommodating Standards and Identification
of Programming Languages, ' Communications of the ACM,
v.11, n. 8, pp.574-576 (August 1968).

NG

[EvSvEvgvpvEvEvgvEIpIgUEvgUEvEIEUgvgvgUEURvEv vgvgvUgE g VgV UYL

Some premises relevant to teaching

1. The human mind is born free, yet everywhere
it is in chains. The educational systcm serves
mainly to destroy for most people, in varying
degrecs, intelligence. curiosity, enthusiasm, and
intellectual initiative and sclf-confidence. We
‘are born with these. They arc gone or severely
diminished when we leave school.

2. Everything is interesting, until ruined for us.
Nothing in the universe is intrinsically unin-
teresting. Schooling systematically ruins things
for us, wiping out these interests; the last thing
to be ruined determines your profession.

3. There are no “subjects.” The division of the

universe into “subjects” for teaching is a mat-

ter of tradition and administrative convenrience.

4. There is no natural or necessary order of
learning. Teaching sequences are arbitrary,
explanatory hierarchies philosophically spuri-
ous. “Prerequisites” are a fiction spawned by
the division of the world into “subjects;” and
maintained by not providing summarics, intro-
ductions or orientational materials except to
those arriving through a certain door.

. Anyone retaining his natural mental facilities .
can learn anything practically on his own,
given encouragement and resources.

6. Most teachers mean well, but they are so

concerned with promoting their images, atti-

tudes and style of order that very little else
can be communicated in the time remaining,
and almost none of it attractively.

N NN SR NN X
F RN KA IR A A KRR KA AR KA

A Aok A Aok ok ke

A AN X0 NN K A A K
o

Fokdrdeok kK kA kk

g Ak et A e dr e kiR A A A ek de ko Ak ek

books.! And this all ignorcs a simple fact: all are
arbitrary. Instructional sequences aren’t needed at all
if the people are motivated and the materials are clear
and available.

Testing as we know it (integrated with walled curric-
ula and instructional sequences) is a destructive activ-
ity, particularly for the orientation which it creates.
The concerns of testing are extrancous: learning to
figure out Jow-level twists in questions that lead no-
where, under pressure.

The system of tensions and defenses it creates in the
student’s personality are unrclated to the subject or
the way people might rclate to the subject. An exploit-
ive attitude is fostered. Not becoming involved with
the subject, the student grabs for rote payoff rather
than insight.

All in a condescending circumstance. Condescension
is built into the system at all levels, so pervasive it is
scarcely noticed. Students are subjected to a grim
variety of put-downs and denigrations. While many
people evidently believe this to be right, its productivity
in building confident and self-respecting minds may be
doubted.

The problems of the school are not particularly the
teacher’s fault. The practice of teaching is principally
involved with managing the class, keeping up face, and
projecting the image of the subject that conforms to the
teacher’s own predilections. The cducational system is
thereby committed to the fussy and prissy, to the en-
forcement of peculiar standards of rightcousness and
the elevation of teachers-—a huge irrelevant shell
around the small kernel of knowledge transmitted.

The usual attacks on computer teaching tend to be
sefttimental and emotional pleas for the alleged hu-
manism of the existing system. Those who are opposed
to the use of computers to teach generally believe the
computer to be “cold™ and “inhuman.” The teacher
is considered “warm™ and “human.” This view is ques-
tionable on both sides.

The computer is as inhuman as we make it. The
computer is no more “cold”™ and “inhuman”™ than a
toaster, bathtub or automobile (all associated with
warm human activities). Living teachers can be as in-
human as members of any people-prodding profession,
sometimes morc so. Computerists speak of “frecing
teachers for the creative part of their work;” in many
cases it is not clear what creative tasks they could be
freed for.

At the last, it is to rescue the student from the in-
human teacher, and allow him to rclate dircetty and
personally to the intrinsically interesting subject mat-
ter, that we need to use computers in cducation.

Many successful systems of teacherless Icarning cxist
in our society: professional and industrial magazines:
conventions and their display booths and brochures:
technical sales pitches (most remarkably, those of med-
ical “detail men); hobbyist circles, which combine
personal acquaintance with a round of magazines and

gatherings; think-tanks and rescarch institutes, where.

specialists trade ficlds; and the respectful bricfing.

None of these is like the conventional classroom
with its haughty resource-chairman: they are not run
on condescension; and they get a lot across. We tend
to think they are not “education” and that the methods
cannot be transferred or extended to the regions now
ruled by conventional teaching. But why not?

If everything we ate were kibbled into uniform dog-
food, and the amount consumed at each fecding time
tediously watched and tested, we would have little
fondness for eating. But this is what the schools do to
our food for thought, and this is what happens to
people’s minds in primary school, secondary school
and most colleges. . i

This is the way to produce a nation of sheep or
clerks. If we are serious about wanting people to have
creative and energetic minds, it is not what we ought
to do. Energy and enthusiasm are natural to the human
spirit; why drown them?

21

Education ought to be clear, inviting and cnjoyable,
without booby-traps, humiliations, condescension or
boredom. It ought to teach and reward initiative, curi-
osity, the habit of self-motivation, intellectual involve-
ment. Students should develop, through practice, abili-
ties to think, argue and disagree intelligently.

Educators and computer enthusiasts tend to agree on
these goals. But what happens? Muny of the inhuman-
ities of the existing system. no less wrong for being
unitentional, are being continued into computer-assist-
ed teaching.

Although the promoters of computer-assisted instruc-
tion, affectionately called “caA1,” seem to think of them-
selves as being at the vanguard of progress in all di-

rections, the field already seems to operate according
‘0 a stereotype. We may call this “classic” or “conven-
ional” cal, a way of thinking depressingly summarized
n “The Use of Computers in Education” by Patrick
suppes, Scientific American, September, 1966, 206-
220, an article of semi-classic stature.

It is an unexamined premise of this article that the
computer system will always decide what the student
is to study and control his movements through it. The
student is to be led by the nose through every subject,
and the author expresses perplexity over the question
of how the system can decide, at all times, where to
lead the student by the nose (top of col. 3, p. 219).
But let us not anticipate alternatives.

It is often asserted (as by Alpert and Bitzer in “Ad-
vances in Computer-Based Education,” Science,
March 20, 1970) that this is not the only approach
current. The trouble is that it seems to be the only ap-
proach current, and in the expanding computer uni-
verse everyone seems to know what cal “is.” And this
1S 1.

Computer-assisted instruction, in this classical sense,
is the presentation by computer of bite-sized segments
of instructional material, branching among them ac-
cording to involuntary choices by the student (*“an-
swers”) and embedding material presented the student
in some sort of pseudo-conversation (“Very good.
Now, Johnny, point at the . . .”)

CAI: Based on unnecessary premises

At whichever level of complexity, all these conven-
tional CAI systems are based on three premises: that
all presentations consists of items, short chunks and
questions; that the items are arranged into sequences,
though these sequences may branch and vary under
control of the computer; and finally, that these sequen-
ces are to be embedded in a framework of dialogue,
with the computer composing sentences and questions
appropriately based on the student’s input and the
branching structure of the materials. Let us call such
systems sIC (Sequenced-Item Conversational) systems.

These three premises are united. For there to be
dialogue means there must be an underlying graph
structure of potential sequences around which dialogue
may be generated; for there to be potential sequences
means breakpoints, and hence items.

Let us question each of the premises in turn.

1. Is dialogue pleasant or desirable? Compulsory
interaction, whether with a talking machine or a stereo-
typed human, is itself a put-down or condescension.
(Note that on superhighways there is often a line of
cars behind the automatic toll booths, even when the
manned ones are open.) Moreover, faked interaction
can be an annoyance. (Consider the green light at the
automatic toll booth that lights up with a “thank you.”)
Moreover, dialogue by simple systems tends to have a
fake quality. It is by no means obvious that phony
dialogue with a machine will please the student.

2. Is the item approach necessary? If the student
were in control, he could move around in areas of
material, leaving each scene when he got what he want-
ed, or found it unhelpful.

3. Are sequences necessary? Prearranged sequences
become unnecessary if the student can see what he has
yet to learn, then pursue it.

The sense ot prestige and participation

CALEL: unnccessary complication

The general belief among practitioners is that ma-
terials for computer-based teaching are extremely dif-
ficult to create, or “program.” Because of possible
item weakness and the great variety of possible se-
quences within the web, extensive experimentation and
debugging are required. Each item must be carefully
proven; and the different sequences open to a student
must all be tested for their effectiveness. All possible
misunderstandings by a student need to be anticipated
and prevented in this web of sequences, which must be
designed for its coverage, correct order, and general
effectiveness.

CAI: general wrongfulness

Computers offer us the first real chance to let the
human mind grow to its full potential, as it cannot
within the stifling and insulting setting of existing
school systems. Yet most of the systems for computer-
assisted instruction seem to me to be perpetuating and
endorsing much that is wrong, even evil, in our present
educational system. cal in its conventional form en-
larges and extends the faults of the American educa-
tional system itself. They are:

® Conduciveness to boredom;

® The removal of opportunities for initiative;

® Gratuitous concerns, both social and administra-
tive (“‘subject,” “progress” in subject);

® Grades, which really reflect commimment level,
anxiety, and willingness to focus on core emphasis;

¢ Stereotyped and condescending treatment of the
student (the “Now-Johnny” box in the computer re-
placing the one that sits before the class);

® The narrowing of curricula and available materials
for “results” at the expense of motivation and general-
ized orientation;

® Destructive testing of a kind we would not permit
on delicate machinery; and,

® An overt or hidden emphasis on invidious ratings.
(Ungraded schools are nice—but how many units did
you complete today?).

There are of course improvements, for instance in
the effects of testing. In the tell-test, tell-test nattering
of cal, the testing becomes merely an irritant, but one
certainly not likely to foster enthpsiasm.

Ordinary
Teaching
STURENT TEACHER SUBJECT
: N
i Computer
[Assisted

Instruction

SUBJECT

STUDENT COMPUTER

SUBJECT ‘

STUDENT

But isn't CAl ‘scientific?’

Part of cAt's mystiquc is bascd upon the idea that
teaching can become “scientific™ in the light of modern
rescarch, especially learning theory. 1t is understand-
ahle that rescarchers should promote this view and
that others should fall for it.

Laymen do not understand. nor are they told, that
“learning theory” is an extremely technical, mathemat-
ically oriented, description of the behavior of abstract
and idealized organisms lcarning non-unificd things
under specific conditions of motivation and non-dis-
traction.

Let us assume, politcly, that learning theory is a
full and consistent body of knowledge. Because of its
name, learning theory has at lcast what we may call
nominal relevance to teaching: but real refcvance is
another matter. 1t may be relevant as Newtonian cqua-
tions are to shooting a good game of pool: implicit but
without practical bearing.

Because of the actual character of learning theory,
and its general remoteness from non-sterile conditions,
actual relevance to any particular type of application
must still be demonstrated. To postulate that the theory
still applics in diluted or shifted circumstances is a
leap of faith. Human beings are not, taken all together,
very like the idcalized pigeons or rats of lcarning
theory, and their motivations and other circumstances
arc not casily controlled. Studies concerned with rate
of repetition and reinforcement are scarccly relevant
if the student hates or docs not understand what he is
doing.

I do not mean to attack all car, or any teaching
system which is effective and gratilying. What 1 doubt
is that siC systems for cal will become more and more
wonderful as effort progresses, or that the goal of talk-
ing tutorial systems is reachable and appropriate. And
what | further suspect is that we are building baredom
systems thal not only muke lite duller but sap intellec-
tual interest in the same old way.

instruct?

Should systems

Drill-and-practice systems are definitely a good thing
for the acquisition of skills and response sets, an im-
provement over workbooks and the like, furnishing
both corrections and adjustment. They are boring, but
probably less so than the usual materials. But the cat
cnthusiasts scem to believe the same conversationalized
chunk techniques can be extented to the realm of ideas.
10 systems that will tutor and chide, and that this will
provide the same sort of natural interest provided by
a live tutor’s instruction.

The conventional point of view in car claims that
because validation is so important, it is nccessary to
have a standardized format of item. sequence and dia-
logue. This justifics turning the endeavor into picky-
work within items and sequence complexes, with
attendant curfeular frecze, and student inanition and
boredom. This is entircly premature. The varicty of
alternative systems for computer teaching have not
cven begun to be explored. Should systems “instruct™
at ali?

‘Responding Resources’ and ‘Hyper-Media®

At no previous time has it been possible to create
lcarning resources so responsive and interesting, or to
give such free play to the student’s initiative as we may
now. We can now build computer-hased presentational
wonderlands, where a student (or other user) may
browse and ramble through a vast varicty of writings,
pictures and apparitions in magical space. as well as
rich data structures and facilities for twiddling them.
These we may cadl, collectively. “responding 1

ourees.”
Responding resources are of two types: facilitics and
hyper-media.

A facility is something the user may call up to per-
form routincly a computation or other act. behaving
in desired ways on demand. Thus J0ss (a clever desk
caleulator available at a terminal) and the Culler-Freed
graph-plotting system (which graphs arbitrary func-
tions the user types in) facilities.

Hyper-media are branching or performing presenta-
tions which respond to user actions, systems of pre-
arranged words and pictures (for example) which may
be explored freety or queried in stylized ways. They
will not be “programmed.” but rather designed. writien.
drawn and edited, by authors, artists, designers and
editors. (To call them “programmed™ would suggest
spurious technicality. Computer systems ta present
them will be “programmed.”™) Like ordinary prose and
pictures. they will be media: and because they are in
some sense “multi-dimensional.”™ we may call them
hyper-media. following the mathematical use of the
term “hyper-".

A modest proposal

The alternative is straightforward. Instead of devis-
ing elaborate systems permitting the computer or its
instructional contents to control the situation, why
not permit the student to control the system, show him
how to do so intelligently, and make jt easy for him
to find his own way? Discard the sequences, items
and conversation, and allow the student to move freely
through materials which he may control. Never mind
optimizing reinforcement or validating teaching se-
quences. Motivate the user and let him loose in a
wonderful place.

Let the student control the sequence, put. him in
control of interesting and clear material, and make him
feel good—comfortable, interested, and autonomous.
Teach him to orient himself: not having the system
answer questions, all typed in, but allowing the student
to get answers by looking in a fairly obvious place.
{Dialogue is unnecessary even when it does not in-
trude.) Such ultra-rich environments allow the student
to choose what he will study, when he will study it and
how he will study it, and to what criteria of accomplish-
ment he will aim. Let the student pick what he wishes
to study next, decide when he wishes to be tested, and
give him a variety of interesting materials, events and
opportunities. Let the student ask to be tested on what
he. thinks he knows, when he is ready, selecting the
most appropriate form of testing available.

This approach has several advantages. First, it cir-
cumvents the incredible obstacles created by the
dialogue-item-sequence philosophy. It ends the danger
to students of bugs in the material. And last, it does
what education is supposed to do—foster student en-
thusiasm, involvement, and self-reliance.

Under such circumstances students will actually be
interested, motivated to achieve far more than they
have ever achieved within the normal instructional
framework; and any lopsidedness which may result
will be far offset by the degree of accomplishment
which will occur—it_being much better to create lop-
sided but enthusiastic genius specialists than listless,
apathetic, or cruelly rebellious mediocrities. If they
start soon enough they may even reach adulthood with
natural minds: driven by enthusiasm and interest,
crippled in no areas, eager to learn more, and far
smarter than people ordinarily end up being.

Enthusiasm and involvement are what really count.
This is why the right to explore far outweighs any
administrative advantages of creating and enforcing
“subjects” and curriculum sequences. The enhancement
of motivation that will follow from letting kids learn
anything they want to learn will far outweigh any
specialization that may result. By the elimination or
benign replacement of both curriculum and tests in an
ultra-rich environment, we will prevent the attrition of
the natural motivation of children from its initially
enormous levels, and mental development will be the
natural straight diagonal rather than the customary
parabola.

Is it so hard? some ideas

CAl is said to be terribly hard. It would seem all the
harder, then, to give students the richer and more
stimulating environments advocated here. This is be-
cause of the cramped horizons of computer teaching
today. Modest goals have given us modest visions, far
below what is now possible and will soon be cheap.

Discrete (Chunk Style) Hypertexts
Source

Summary Quote

Main
Text
Comments

Controversy

Supplementary

o NE

The static computer displays now associated with
cal will give way to dynamic displays driven from
minicomputers, such as the 1DHOM, 1BM 2250/4 or
Imiac pps-1. (The last of these costs only $10,000
nowy by 1975 such a unit will probably cost $1,000
or less.) Not only will computers be much cheaper, but
their usability will improve: a small computer with a
fair amount of memory will be able to do much more
than it can now, including operate a complex display
from its own complex data base.

It is generally supposed that systems like these need
big computers and immense memories. This is not
true if we use the equipment well, organize storage
cleverly, and integrate data and display functions under
a compact monitor. This is the goal of The Nelson
Organization’s Project Xanadu, a system intended to
handle all the functions described here on a mini-
computer with disk and tape.

Here is another example showing how we chug
along the row of symbols and take it apart. Again,
the alphabetical entities represent things.

b@f\
Ny

first operation (one-sided)
A, - e

second operation (two-sided)

Try dividing up these examples:

ﬂg{_% @ ROMEO

ELEANOR <& SAM (_7 SUSIE

One more thing needs to be noted. Not only
can we work out the sequences of operations, from
right to left, between the symbols; the computer can

course essential.

INSIDE

The truth of the matter is that APL in the com-
puter is a continuing succession of things being
operated on and replaced in the work area.

first thing

... UG ﬁ;zf YARG
v

thing which results
from operator ¢
done on YARGH

thing that results from operationg;
done to that by UG

and so on.

What is effectively happening is that the APL
processor is holding what it's working on in a
holding area. The way it carries out the scan of
the APL language, there only has to be one thing
in there at a time.

APL procescor

(ree &l e bafow)

Suppose we have a simple user program,
Y + -2

Starting at the right of this user program, the
main APL program puts Z into the work area. That's
the first thing. Then, stepping left in the user
program, the APL processor follows the rules and
discovers that the next operation makes it

-z

which happens to mean, "the negation of Z." So it
carries this out on Z and replaces Z with the result,
~Z. Then, continuing to scan leftward, the APL
processor continues to replace what was in the work
area with the result of each operation in the suc-
cessive lines of the user program, till the program

" is completed.

AFL Processor
(\13 troav»«)

user \""3"'\ m APL
Y+-7
‘\OH"D area

— ™

re
'.

-
(wactwe ﬁ°"J‘)

| "
ﬂi:af(“ Tl\ﬂ»:gs Lorked oiy

z
ead by resolt £

reglaced L\\ esolt o
"y _Z:.

SOME APL OPERATORS

It would be insane to enumerate them all,
but here is a sampling of APL's operators. They're
all on the pocket cards (see Bibliography).

For old times' sake, here are our friends:
(And a cousin thrown in for symmetry.)

+A plain A
(whatever A should happen to be)
A+B A plus B
{whatever A should happen to B,
heh heh)
-B negation of B
A-B A minus B
»B the sign of B
{expressed as -1,0 or 1)
AxB A times B

And here are some groovies:

1A factorial A
(1x2x3 ... up to A)
A'B the number of possible
combinations you can get from B,
taken A at a time

?A a random integer
taken from array A
A’B take some integers at randem

from B. How many? A.

But, of course, APL goes on and on. There
are dozens more (including symbols made of more
than one weird APL symbol, printed on top of each
other to make & new symbol).

Consider the incredible power. Single APL
symbols give you logarithms, trigonometric
functions, matrix functions, number system conver-
sions, logs to any arbitrary base, and powers of e
(a mysterious number of which engineers are fond).

Other weird things. You can apply an oper-
ation to all the elements of an array using the /
operator: +/A is the sum of everything in A, /A
is the combined product of everything in A. And
so on. Whew.

As you may suspect, APL programs can be
incredibly concise. (This is a frequently-heard
eriticism: that the conciseness makes them hard
to understand and hard to change.)

MAKE YOUR OWN

Finally and gloriously, the user may define
his own functions, either one-sided or two-sided,
with alphabetical names. For instance, you can
create your own one-sided operator ZONK, as in

ZONK B
and even a two-sided ZONK,
A ZONK B
which can then go right in there with the big boys:
Abzonkr) B

Don't ask what it means, but it's allowed.

SToP THE PRESSES|

An APL machine, a mini that does nothing but APL,

23

APL THINGS, TO GO WITH YOUR OPERATORS

As we said, APL has operators (already
explained) and things. The things can be plain
numbers, or Arrays (already mentioned under
BASIC). Think of them as rows, boxes and
superboxes of numbers:

2 46 810 a one-dimensional thing

2 4

35 a two-dimensional thing
2 3

6 8 a three-dimensional thing,

seen from the front. Maybe
we better look at the levels
side by side:
13 2 4
57 6 8

APL can have Things with four dimensions, five and
so on, but we won't trouble you here with pictures.

Oh yes, and finally a no-dimensional thing.
Example:

75.2

It is called no-dimensional because there is only
one of it, so it is not & row or a box.

Seriously, these are arrays, and Iverson's
APL works them over, turns them inside out, twists
and zaps through to whatever the answers are.

As in BASIC and TRAC, the arrays of APL
are really stored in the computer's core memory,
associated with the name you give them. The
arrays may be of all different sizes and dimen-
sionality:

JOE]

2.5 7.1 89.006

woopsie "Lijers| am‘]"
abedefl (set beloa)
SAM |

(empty array, but a name is
saved for it.)

NUM
3.1416

(a zero-dimensional array,
since it's only one number.)

Each array is really a series of memory locations
with its label and boxing information-- dimensions
and lengths-- stored separately. One very nice
thing about APL is that arrays can keep changing
their sizes freely, and this need be of no concern
to the APL programmer. (The arrays can also be
boxed and reboxed in different dimensions just by
changing the boxing information-- with an operator
called "ravel.")

is now available from a Canadian firm for the mere pittance of

THREE THOUSAND FIVE HUNDRED DOLLARS,

the price of many a mere terminal. This according to

Computerworld, 10 Oct 73.

Run, don't walk, to Micro Computer Machines, Inc.,
4 Lansing Sq., Willowdale, M2J 1T1, Ontario, Canada. That
$3500 gets you a 16K memory, the APL program, keyboard and
numerical keyboard, and plasma display. Cassette (which~
apparently stores and retrieves arrays by name when called
by the program) is $1500 extra. RUNS ON BATTERIES. Sorry,
no green stamps. (Note that the APL processor takes up most

of the 16K, but you can get more.)

* * * * *

The rumor that IBM has APL on a chip, inside a Selectric
-- which therefore does all these things with no external
connection to any (external) computer-- remains unsubstantiated.

The rumor has been around for some time.

But it's quite possible.

The thing is, it would probably destroy IBM's entire

product line-- and pricing edifice.

24

Few people know all of APL, or would want to.
The operations are diverse and obscure,
and many of them are comprehensible only
to people in mathematical fields.

However, if you know a dozen or so you can
really get off the ground.

As in BASIC, you can use subscripts to
get at specific elements in arrays. Referring to
the examples above, if you type

JOE [2]
you get back on your typewriter its value

7.1

and if you type

NORA [2 , 4]

you get back
d

There are basically four kinds of information
used by APL, and ali of them can be put in arrays.
Three of these types are numerical, and arrays of
them look like this on paper:

Integer arrays: 2 4 -6 8 10 2048

Scalar arrays: 2.5 -3.1416 0.001 2795333.1
(a scalar is something that can be
measured on a ruler-like scale,
where there are always points
in betweeen.)

Logicalarrays: 1 0 0 ¢ 1 0 1
(these arrays of ones and zeroes are
called "logical” for a variety of
reasons; in this case we could call them
"logical" simply because they are used
for picking and choosing and deciding.)

These three numerical types of information may be
freely intermixed in your arrays. One more type,
however, is allowed. It's hard to figure out from
the manuals, but evidently this type can't be
mixed in with the others too freely. We refer to
the alphabetical or "literal” array, as in

The quick brown fox jumped over the lazy dog.

Now , pre-written APL programs can print out

a terminal, which is why APL is-good for the
creation of systems for naive users (see "Good-Guy
Systems," p. 13).

Literal vectors may be picked apart,
rearranged and assembled by all the regular APL
operators. That's how we twiddle our text.

CRASHING THE SYMBOLS TOGETHER

Now that we know about the operators and
the arrays, what does APL do?

It works on arrays, singly and in pairs,
according to those funny-looking symbols, as the
APL processor scans right-to-left.

IVERSON'S TAFFY-PULL

A number of basic APL operators help you
stretch, squish and pull apart your arrays.
Consider the lowly comma (called "ravel," which
means the same as "unravel™).

WA forget A's old dimensions,
make it one-dimensional.
A.,B make A and B one long
one-dimensional array.

Here is how we make things appear and disappear.
("Compression.™")

A/B A must be a one-dimensional

array of ones and zeroes.
The result is those elements
of B selected by the ones.
Example:

101/cat
results in

ct

The opposite slash has the opposite effect,
inserting extra nuil elements where there

are zeroes:
1101\3 589
results in
350 9

Here's another selector. This operator
takes the first or last few of A, depending on size
and sign of B:

Bta
and B'g A is the opposite.

If you want to know the relative positions of
numbers of different sizes in a one-dimensional
array,

? (name of array)
will tell you. It gives you the positions, in order
of size, of the numbers. And ¢ does it for

descending order.

These are just samples. The list goes on
and on.

SAMPLE PROGRAMS

Here is an APL program that types out
backwards what you type in. First look at the
program, then the explanation below.

Y Rev
1] 1<
1] [&t
\'

Explanation. The down-pointing triangles
("dels") symbolize the beginning and end of a
program, which in this case we have called REV.
On Line 1, the "Quote-Quad" symbol (on the right)
causes the APL processor to wait for alphabetical
input. Presumably the user will type something.
The user's line of input is stuffed into thing or
array 1. The user's carriage return tells the APL
processor he has finished, so it continues in the
program. On the second line, APL takes array I
and does a one-sided to it, which happens to
mean turning it around. Left-arrow into the
quote-quad symbol means print it out.

Because of APL's compactness, indeed, this
magnificent program can &ll go on one line:

N Rrev
[(10«$1<0
Vv

First the input goes into I, then the processor does
a 13 I (reversal) and puts it out.

And here is our old friend, the fortune-cookie
prisoner.

INF

T

= [1] [« 'HELP.1aM CAUGHT I A LOOP'

[zj—)x
\Y

On line 1 the program prints out whatever's in
quotes. And line 2 causes it to go back and do
line 1 again. Forever.

THE TEST-AND-BRANCH n{ APL

It should be mentioned at this point that
branching tests are conducted in APL programs
by specifying conditions which are either true or
false, and APL's answer is 1 if true, 0 if false.
(This is another thing these logical arrays are for.)

Example:
3>2
fﬂ%\

This operation leaves the number 1, because 3
is greater than 2. So you could branch on a test
with something like

—»7x AD>B

which branches to line 7 in the program if A is
greater than B, and is ignored (as an unexecutable
branch to line zero) if B is greater than A.

Some love it, some hate it.

THE APL ENVIRONMENT

Aside from the APL language itself, to
program in APL you must learn a lot of "system"
commands, alphabetical commands by which to tell
the APL processor what you want to do in general
-~ what to store, what to bring forth from storage,
and so on.

Ordinarily you have a workspace, a collec-
tion of programs and data which you may summon
by name. When it comes-- that is, when the com-
puter has fetched this material and announced on
your terminal that it is ready-- you can run the
programs and use the data in your workspace.
You can also have passwords for your different
workspaces, so others at other terminals cannot
tamper with your stuff.

This is not the place to go into the system
commands. If you're serious, you can learn them
from the book or the APL salesman.

There are many, many different error
messages that the APL processor can send you,
depending on the circumstances. It is possible
to make many, many mistakes in APL, and
there are error messages for all of them. All
of them, that is, that look to the computer like
errors; if you do something permissible that's
not what you intended, the computer will not
tell you.

But it is a terminal language, designed to
help people muddle through.

Good luck!

INERSON's
STHUANGE AND WONDERFUL
CHoltes of SvmgoLs

Iverson's notation is built around the
curious principle of having the same symbols mean
two things depending on context. (Goodness
knows he uses enough different symbols; doubling
up at least means he doesn't need any more.) It
turns out that this notation represents a consistent
series of operations in astounding combinations.

The overall APL language, really, is the
carrying through of this notation to create an im-
mensely powerful programming language. The
impetus obviously came from the desire to make
various intricate mathematical operations easy to
command. The result, however, is a programming
language with great power for simpler tasks as well.

Now, the consequences of this overall idea
were not determined by God. They were worked
out by Iverson, very thoughtfully, so as to come
out symmetrical-looking and easy to remember.
What we see is the clever exploitation of apparent
but inexact symmetries in the ideas. Often APL's
one-sided and two-sided pairs of operators are
more suggestively similar than really the same
thing.

When Iverson assigns one-sided and two-
sided meanings to a symbol, often the two meanings
may look natural only because Iverson is such an
artist. Example:

two-sided one-sided
AXB XxB
A times B the sign of B

This makes sense. To argue that it is inherent in
"taking away half the idea of multiplication,"”
however, is dubious.

Some symmetries [verson has managed to
come up with are truly remarkable. The arrow,
for instance. The left arrow:

AeB
Assignment statement: B (which
may have been computed during
the leftward scan) is assigned
the name of A;

and the right arrow:

B
The jump statement, where B
(which may have been com-
puted during the leftward scan)
is a statement number; the
program now goes and executes
that line.

This symmetry is mystically interesting because
the assignment and jump statements are so basic
to programming .

Or consider this:

ex

print X.

X<

take input from the user and
stuff it into X.

Another weird example: supposedly the
conditional branch

> B/A

(one way of writing, "jump to A if B is true™)

is a gpecial case of the "compression" operator.
(Berry 360 primer. 72 and 165.) This is very
hard to understand, although it seems clear while
you're reading it.

On the other hand, there is every indication
that APL is so deep you keep finding new truths
in it. (Like the above paragraph.) The whole
thing is just unbelievable. Hooray for all that.

APL FOR USER-LEVEL SYSTEMS
(See "Good-Guy Systems," p. /%)

Because APL can solicit text input from a user and analyze it,
the language is powerful for the creation of user-level environments
and systems-- with the drawback, universal to all IBM terminals,
that input lines must end with specific characters. In other words,
it can't be as fully interactive as computer languages that use ASCIl
terminals.

Needless to say, the mathematical elegance and power of the
system is completely unnecessary for most user-level systems. But
it's nice to know it's there.

APL is probably best for systems with well-defined 2nd seg-
regated files-- "array-type problems," like payroll, accounts and
so on. It is not suited for much larger amorphous and evolutionary
stuff, the way list languages like TRAC are. Don't use APL if
you're going to store large evolving texts or huge brokerage data
bases, like what tankers are free in the Mediterranean.

The quickest payoff may lie in using APL to replace business
forms and hasten the flow of information through a company. A
salesman on the road with an APL terminal, for instance, can at once
enter his orders in the computer from the customer's office, checking
inventory directly. If the program is up.

ROUND (an obscure and donnish joke)

, the Greek letter "rho," is an APL operator
/’ for testing the size of arrays. When used
in the one-sided format, it gives the sizes
of each dimension of an array .
Thus Ty
A, when A is [J
wz 2l >
And now
/) 'YOUR BOAT'
equals 9, since there are 9 letters
in the array 'YOUR BOAT';
'YOUR BOAT'
is 1,
since p 9is 1, and

/770 'YOUR BOAT'
is likewise 1.

e N

This language is superb for "scientific" programming,
including heavy number crunching and exper-

imentation with different formulas on small
data bases. (Big date bases are a problem.)

1t is also not bad for a variety of simple ‘business
applications, such as payroll, accounting,
billing and inventory .

FAST ANSWERBACK IN APL

If you want quick answers, the APL terminal
just gives you the result of whatever you type in.
For instance,

3x4
will cause it to print out
12

and the same goes for far less comprehensible
stuff like

T2 + ¢ ? 1 2 3 4 (carriage return)
[
typed-in array
PROGRAMS IN APL

But the-larger function of APL is to create
programs that can be stored, named and carried
out at a later time.

For this, APL allows you to define programs,
a line at a time. The programs remain stored in the
system as long as you want. Using the "Del"
operator (), you tell the system that you want to
put in & program. Del causes the terminal to help
you along in various ways.

A nice feature is that you can lock your APL
programs, that is, make them inaccessible and
unreadable by others, whether they are
programmers or not. In this case you define a
program starting with the mystical sign del-tilde
(&) instead of del (/), and invoke the names
of dark spirits.

APL, like BASIC, can be classed as an "algebraic™
language-- but this one is built to please
real mathematicians, with high-level stuff
only they know about, like Inner and Outer
Products.

Paradoxically, this makes APL terrific for teaching
these deeper mathematical concepts, helping
you see the consequences of operations and
the underlying structure of mathematical
things. Matrix algebra, for instance, can be
visualized a lot better by working up to it
with lesser concepts (like vectors and
inner products) enacted on an APL terminal.

It would be really swell if someone would put to-
gether a tour-guide book of higher mathem-
atics at the grade/highschool level for people
with access to APL.

Interestingly, Alfred Bork (U. of Cal. at Irvine)
is taking & similar approach to teaching
physics, using APL as a fundamenta]
language in his physics courses.

SNEAKY REPEATER STATEMENT IN APL?

One of the APL operators, "iota" (1),
seems to make its own program loop within a line.
When used one-sided, it furnishes & series of
ascending numbers up to the number it's operating
on. This until the last one is reached.

Youtype: 3x17
APL replies: 3 6 9 12 15 18 21

In other words, one-sided iota looks to be
doing its own little loop, increasing its starting
number by 1, until it gets to the value on its right,
and chugs on down the line with each.

Very sneaky way of doing & loop.

However! It isn't really looping, exactly.
What the iota does is create & one-dimensional
array, a row of integers from 1 up to the number
on its right. This result is what then moves on
leftward.

WHERE TO GET IT

IBM doesn’t sell APL services. Their time-
sharing APL is available, however, from various
suppliers. Of course, that means you probably
have to have an IBM-type terminal, unless you find
& service that offers APL to the other kind-- an
addition which seems to be becoming fashionable.

Usual charge is about ten bucks an hour
connect charge, plus processing, which depends
on what you're doing. It can easily run over $15
an hour, though, and more for heavy crunching
or printout, so watch it.

The salesman will come to your house or
office, verify that your terminal will work (or
tell you where you can rent one), patiently show
you how to sign on, teach you the language for
maybe an hour if he's a nice guy, and proffer
the contract.

—» APL services are probably safer to sign
onto, in terms of risked expenses, than most other
time-sharing systems. (Though of course all
time-sharing involves financial risk.) Because
the system is restricted only and exactly to APL,
you're not paying for capabilities you won't be
using, or for massive disk storage (which you're
not allowed in most APL services anyway), or
for acres of core memory you might be tempted
to fill.

~» In other words, APL is a comparatively
straight proposition, and highly recommended if
you have a lot of math or statistics you'd like to do
on a fairly small number of cases. Also good for
a variety of other things, though, including fun.

Different vendors offer interesting variations
on IBM's basic APL\ 360 package, as noted below .
In other words, they tompete with each other in
part by adding features to the basic APL\360 pro-
gram, vying for your business. Each of the ven-
dors listed also offers various programs in APL
you can use interactively at an IBM-type ‘terminal ,
in many cases using an ordinary typeball and not
seeing the funny characters; though how clear and
easy these programs are will vary.

And remember, of course, that you can do
your own thing . or have others do it for you,
using APL.

APL is also available on the PDP-10, and
presumably other non-IBM big machines.

THE VENDORS

Scientific Time-Sharing Corporation (7316 Wiscon-
sin Ave., Bethesda MD 20014) calls its
version APL*PLUS. They'll send you a
nice pocket card summarizing the commands.

APL*PLUS offers over twentyfive
concentrators around the country, per-
mitting local-call services in such metro-
politan centers as Kalamazoo and Rochester.
(Firms with offices in both cities, please
note.)

They also have an "AUTOSTART"
feature which permits the chaining of pro-
grams into grand complexes, so you don't
have to call them all individually.

APL*PLUS charges the following for
storage, if you can dig it: $10 PER MILLION
BYTE-DAYS. (A byte is usually one
character.) The census is probably taken
once a day .

This firm also services ASCII ter-
minals, which some people will consider
to be a big help. That means you can have
interactive users of APL programs at ASCII
terminals, and that you can also program
from the few APL terminals that aren't of
the IBM type.

Time Sharing Resources, Inc. (777 Northern Bivd.,
Great Neck, N.Y. 11022) offers a lot of APL
service, including text systems and various
kinds of file handling. under the name
TOTAL/APL.

Among the interesting features
Time Sharing Resources, Inc. have added
is an EXECUTE command, which allows an
APL string entered at the keyboard in
user on-line mode to be executed as straight
APL. This is heavy.

Perhaps the most versatile-sounding APL service
right now is offered by, of all people, a
subsidiary of the American Can Company .
American Information Services (American
Lane, Greenwich CT 06830) calls their
version VIRTUAL APL, meaning that it can
run in "virtual memory"-- a popular
misnomer for virtually unlimited memory--
and consequently the programmer is hardly
subject to space limitations at all. Moreover,
files on the AIS system are compatible with
other IBM languages, so you can use APL to
try things out quickly and then convert to
Fortran, Cobol or whatever. (Or, conversely,
a company may go from those other languages
to APL without changing the way their files
are stored on this service.) APL may indeed
intermix with these other languages, how
is unclear.

And the prices look especially good:
$8.75 an hour connect, $15 a month minimum
(actually their minimum disk space rental
-- 1 IBM cylinder-- so for that amount you
get a lot of storage). But remember there
are still core charges, and $1 per thousand
characters printed or transferred to storage.

In the West, a big vendor is Proprietary Computer
Systems, Inc., Van Nuys, California.

TERMINALS

For an APL terminsal, you might just want a
2741 from IBM (about a hundred a month, buton a
year contract).

Or see the list under "Terminals" (p.\“\) ’

or ask your friendly APL company when you sign up.

Two more APL terminals, mentioned here
instead of under "Terminals" for no special reason:

Tektronix offers one of its greenie graphics
terminals (see flip side) for APL (the model 4013).
This permits APL to draw pictures for you. It
seems to be an ASCII-type unit.

Computer Devices, Inc. supposedly makes an
an APL terminal using the nice NCR thermal printer,
which is much faster and quieter than a mechanical
typewriter. Spookier, though. And the special
paper costs a lot of money.

BIBLIOGRAPHY

Iverson has a formal book. Ignore it unless you're
a mathematician: Kenneth E. lverson,

A Programming Language. Wiley, 1962.

Paul Berry, APL\ 360 Primer, Student Text.
Available "through IBM branch offices,"” or
1BM Technical Publications Department,
112 East Post Road. White Plains, NY 10601,
No IBM publication number on it, which is
sort of odd. 1969.

—»This is one of the most beautifully
written, simple, clear computer manuals
that is to be found. Such a statement may
astound readers who have seen other IBM
manuals, but it's true.

A.D. Falkoff dnd K.E. Iverson, APL \360 Users'
Manual. Also available from IBM, no
publication number.

POCKET CARDS (giving very compressed sum-
maries) are available from both:

Scientific Time Sharing Corp.

(see WHERE TO GET IT)

Technical Publications Dept., IBM,

112 East Post Road. White
Plains, N.Y. 10601.

Ask for APL Reference
Data card $210-0007-0. May
cost a quarter or something.

Paul Berry, APL\1130 Primer. Adapted from 360
manual. Same pub. But for version of APL
that runs on the IBM 1130 minicomputer.

Roy A. Sykes, "The Use and Misuse of APL."
$2 from Scientific Time-Sharing Corp.,
7316 Wisconsin Ave., Bethesda MD 20014.

A joker for you math freaks. Trenchard More,
Jr., "Axioms and Theorems for a Theory of
March 73, 135-157. This is a high-level
thing, a sort of massive set theory of APL,
intended to make APL operators apply to
arrays of arrays, and lead ultimately to the
provability of programs.

"Get on Target with APL." A suggestive circular
sales thingy. IBM G520-2439-0.

IBM has a videotaped course in APL by A.J. Rose.
(Done 1968.)

What you really need to get started is Berry's
Primer, Falkoff and Iverson's manual, and a pocket
card. Plus of course the system and the friend to
tutor you.

Power and simplicity do not often go together .

APL is an extremely powerful language for
mathematics, physics, statistics, simulation
and so on.

However, it is not exactly simple. It's not easy
to debug. Indeed, APL programs are hard
to understand because of their density.

And the APL language does not fit very well on
minis.

APL is not just a programming language.
It is also used by some people as a definition or
description language, that is, a form of notation
for stating how things work (laws of nature,
algebraic systems, computers or whatever).

For instance, when IBM's 360 computer
came out, Iverson and his friends did a very
high-class article des¢ribing formally in APL
just what 360s do (the machine's architecture).
But of course this was even less comprehensible
than the 360 programming manual.

Falkoff, A.D., K.E. Iverson and E.H.
Sussenguth, "A Formal Description
of System/360," IBM Systems Journal,
v.3no. 3, 1964.

The formal description in APL.

IBM System/360 Operating System: Assembler

Language. Document Number
C28-8514-X (where X is & number
signifying the latest edition). IBM
Technical Publications, White Plains
New York.

The Manual.

26

DATA STRUCTURE.

INFORMATION SETUPS

One of the commonest and most destructive
myths about computers is the idea that they "only
deal with numbers." This is TOTALLY FALSE.

Not only is it a ghastly misunderstanding, but it is
often an intentional misrepresentation, and as such,
not only is it a misrepresentation but it is a damned
lie, and anyone who tells it is using "mathematics"”
as a wet noodle to beat the reader with.

Computers deal with symbols and patterns.

Computers deal with symbols of any kind--
letters, musical notes, Chinese ideograms, arrows,
ice cream flavors, and of course numbers. (Num-
bers come also in various flavors, simple and
baroque. See chocolate box, p. 79,

Data structure means any symbols and pat-
terns s:t_u-p for use in a computer. It means what
things are being taken into account by a computer
program, and how these things are set up-- what
symbols and arrangements are used to represent
them.

The problem, obviously, is Representing
The Information You Want Just The Way You Want It,
in all its true complexities.

(This is often forbiddingly stated as "making
a mathematical model"-- but that's usually in the
rhetorical, far-fetched and astral sense in which
all relations are "mathematical” and letters of the
alphabet are considered to be a special distorted
kind of number.)

Now it happens that there are many kinds of
data structure, and they are interchangeable in
intricate ways.

. The same data, with all its relationships and
intricacies, can be set up in a vast variety of ar-
rangements and styles which are inside-out and
upside-down versions of each other. The same
thing (sey, the serial number, 24965, of an auto-
mobile) may be represented in one data structure
by a set of symbols (such as the decimal digits

2, 4, 9, 6, 5 in that order), and in another data
structure by the position of something else (such
as the 24965th name in a list of automobile owners
registered with the manufacturer).

Furthermore, many different forms of data
may be combined or twisted together in the same
overall setup.

The data structure chosen goes a long way
in imposing techniques and styles of operation on
the program.

On the other hand, the computer language
you use has a considerable effect upon the data
structures you may choose. Languages tend to
impose styles of handling information. The deci-
sion to program a given problem in a specific lan-
guage, such as BASIC or COBOL or APL or TRAC
Language, either locks you into specific types of
data structure, or exerts considerable pressure to
do it a certain way. In most cases you can't set it
up just any way you want, but have to adjust to
the language you are using-- although today's
languages tend to allow more and more types of
data.

Plainly, then, it is these overall structures
that we really care about; but to understand over-
all structures, we need an idea of all the different
forms of data that may be put in them.

VARIABLES AND ARRAYS

The earliest data structures in computers,
and still the predominating ones, are variables and
arrays. (We met them earlier under BASIC, see

fp‘lc {7, and APL, see " 75

A variable is a space or location in core
memory. (For convenience, most programming
languages allow the programmer to call a variable
by a name, so that he doesn't have to keep track
of its numerical address.)

core.

variahle

=3
T emony slet)

SORE

{rane the

prognmner
res

|
1
|

An array (also called a table) is a section
of core memory which the programmer cordons off
for the program to put and manipulate data in. If
SPENCER is the name of the array, then SPENCER (1)
is the first memory slot in it, SPENCER(2) is the
second, and so on up to however big it is.

e
9"”“"7\ B g

core

(You can get a feel for how this ordin-
arily relates to input from outside-- see "How
Data Comes, Goes, and Sits," nearby.)

The contents of & numerical field, or
piece of data coming in, can simply be stuffed
by the programmer into a variable.

The contents of a record, or unified
set of fields, can get put into an array. The
program can then pick into it for separate
variables, if desired, or just leave them
there to be worked on.

Then you twiddle your variables with
your program as desired.

When you've done one record, you
repeat. That's how lots of business programs
g£0. Some other routine kinds, too.

FANCY STRUCTURES

Many forms of advanced programming are
based on the idea that things don't have to be stored
next to each other, or in any particular order.

If things aren't next to each other, we need
another way the program can tell how they belong
together.

A pointer, then-- sometimes called a link--
is a piece of data that tells where another piece of
data is, in some form of memory. Pointers often
connect pieces of data.

er pieceT Po‘ir‘{t’;“
!
| ofbata |

['Another piece |
f of Data

A pointer can be an address in core memory; it
can be an address on disk (diskpointer); it can
point to a whole string of data, such as a name,
when there is no way of knowing in advance how

long the string may be (stringpointer).

A series of pieces of data which point to each
other in a continuing sequence is called a threaded
list.

o7
EW/;—/ bfe o]
[l l—s]o]7}

For this reason the handling of data held together
by pointers-- even though it may make all sorts of
different patterns-- is called list processing. (The
(The term "list processing" might seem to go a-
gainst common sense, as it might suggest something
like, say, a laundry list, which is structured in a
very simple blocklike form. But that's what we
call it.)

Prominent list-processing languages include
SNOBOL, L6 and LISP (see p.-31). There is argu-
ment as to whether TRAC Language is a list-proc-
essing language.

Here are some interesting structures that
programmers create by list processing:

RINGS (or cycles). These are arrangements
of pointers that go around in a circle to their first
item again.

L\cu{

e t AN
[/D
TREES. These are structures that fan out.

(There are no rings in a tree structure, technically
speaking.)

GRAPH STRUCTURES (sometimes called
plexes). Here the word "graph" is not used in the
ordinary way, to mean a diagrammatic sort of pie-
ture, but to mean any structure of connected
points. Rings and trees are special cases of graph
structures.

j|

/ N u

7 1
N A

Graph structures
can go any which way.

FAST-CHANGING DATA

One of the uses of such structures is in
strange types of programs where the interconnec-
tions of information are changing quickly and
unpredictably. Such operations happen fast in
core memory. In this kind of programming (for
which languages like LISP, SNOBOL and TRAC
Language are especially convenient), the pointers
are changed back and forth in core memory, every
which way, all the time. Presumably according to
the programmer's fiendish master plan-- if he's
gotten the bugs out. (See Debugging, p.30.)

FANCY FILES

But these structures are not restricted to
data in core memory. Complex and changeable
files can be kept on disk in various ways by the
same kind of threading (called "chaining™ on mass
storage) .

CHAINED FILE ON DISK

1
m[—\/
L

s [E

Another way of handling changeable files is
through a so-called directory block, which keeps
track of where all the other blocks are stored.

r L drrector Llock

AN
VDY L] o L2 beckes of file

But these techniques, you see, may be used
in both fust and slow operations, and for any pur-
pose, so trying to categorize them tends not to be
helpful. (Note also that these techniques work
whether you're dealing with bits, or characters,
or any other form of data.)

Data structure
may consist of
any conceivable
symbolic representations,
knitted into

an overall information setup.

Note: By decent standards of English,
the word data should be pliural, datum sin-
gular. But the matter is too far gone: data
is now utterly singular, like "corn" and
"information." a granular collective which
may be scooped, poured or counted.

But I draw the line at media. Media
are many, "media" is plural!

A CLASSIE MISUNDERSTANDING

"Computers put everything into pigeonholes.”

Wrong. People put things into pigeon-
holes. And designers of computer programs
can set up lousy pigeonholes. If you let 'em.
More sophisticated programming can often
avoid pigeonholes cntirely.

& BT Is Nt A Bece

People who want to feel With It
occasionally use the term "bit" for
any old chunk of information, like a
name or address. This is Wrong.

A Bit is the smallest piece of binary
information, an item that can be one
of two things, like heads or tails,

X or O, one or zero; and all other
information can be packed into a
countable number of bits. (How many
may depend on the data structure
chosen.)

As a handy rule of thumb:
every letter of the alphabet or punec-
tuation mark is eight bits (see ASCII
box); for heavy storage of everyday
decimal numbers, every numerical
digit can be further packed down (to
four bits in BCD code).

A CONCRETE EXAMPLE. Suppose we want Here are some assumptions 1 have embodied

to represent the genealogy of the monarchs of Eng- in this data structure. That is, I had them in
England, so far as is known, in a computer data mind. (The parts you didn't have in mind are
structure. NOTE THAT A DATA STRUCTURE I8 what get you later.)

DIFFERENT FROM A PROGRAM: if several program-

mers agree beforehand on a data structure, then Parents and children of monarchs

they can go separate ways and each can write a are included, as well as
program to do something different with it-- if they monarchs.
have really agreed on a complete and exact layout, All monarchs have a separate mon- a a
which they may only think they've done. arch number.
No monarch reigned more than A T&_
First we consider the subject matter. Gen- twice. (?) amya

ealogy is conceptually simple to us, but as data No monarch or parent of a monarch 4‘\ a&v

is not as trivial as it might seem at first. Every had more than five children 37 a M

person has two parents and a specific date of birth. of one sex. (Note the danger — T S'EIWT

Each pair of parents can have more than one child, of these assumptions.) ')

and individual parents can at different times share We are not interested in grandchil- The Qkf‘(Léi

parenthood with different other individuals. dren of monarchs unless they —

are also monarchs, or siblings,
Presumably we would like a data structure _or parents of monarchs.

that allows a program to find out who was a given The information about the different

person's parent, who were a given person's chil- people can be input in any

dren, what brothers and sisters each person had, order, as the years of reign

and similar matters (so far as is known by histor- can be stepped through by a

ians-- another difficulty). program to find the order of

reign. " There is a growing feeling that data processing people

would benefit if they were to accept a radically new
point of view, one that would liberate the application
programmer's thinking from the centralism of core
storage and allow him the freedom to act as a naviga-
tor within & database. ... This reorientation will
cause as much anguish among programmers as the
heliocentric theory did among ancient astronomers and

Note that just because it is simple to put this
information in a wall chart, that does not mean it
is simple to figure out an adequate data structure.

if this seems like too much bother, that is
in a way the point. Data structures must be
thought out. Since computers have no intrinsic
way of operating or of handling data (though
particular languages will restrict you in partic-
ular ways), you will have to work all this out,

Note too, that any aspect of the data which

What's not there is not there.

The easy way out is to use a language like,
say, TRAC Language, and use its basic units (in
this case, "forms") to make up a data structure
whose individual sections would show parentage,
dates, brothers and sisters and so on.

The braver approach is to try to set it up
for something like FORTRAN or BASIC, languages
which treat core memory more like a numerically-
addressed array or block, as does rock-bottom
machine language.

Let us assume that we have decided to use
an array-type data structure, for instance to go
with a program in the BASIC language on a 16-
bit minicomputer. We do not have much room
in core memory, so for each person in our data
structure we are going to have to store a sepa-
rate record on a disk memory, and call it into
core memory as required.

After much head-scratching, we might
come up with something like the following. It
is not a very good data structure. It is not a
very good data structure on purpose.

It uses a block of 28 words, or 448 bits,
per individual, not counting the length of his
name, which is an additional 8 bits per char-
acter or space. However, this in itself is nei-
ther good nor bad. It's more than you might
expect, but less than you might need.

(ncidentally, out of concern for storage
space, some data fields are packed more than
one to a 16-bit computer word. This is scorn-
fully called bit-fiddling by computerfolk who
work on big machines and don't have to worry
about such matters.)

1
individual's own 2 } serial no.
(name) 3, . stringpointer
4 (two 16-bit words long)
mother 5 . serial no.
father 6 serial no.
brothers 7 serial no.
(up to five) 8 :
9 .
10
1o
sisters 12 serial no.
(up to five) 13 .
14 .
15 :
16 -
date of lst reign, if any 17 _ start (11 bits) ’Tno. months_|
date of 2d reign, if any 18 __ start (11 bits) no. months
female children, 19 serial no.
up to five 20 .
21 H
22
23

male children, 24 serial no.
up to five 25 .

26 |

27

28 |

As explained already, that was the basic
block. We still have to keep the names some-
where, in a string area. Whether to keep this
in core all the time, or on disk, is a decision
we needn't go into here.

NAME REER (peokel 2 etk

1 {b-bit we

0p) LETTERS EVEN LETIS

e .
{ monarch no. (if any) | sex 11 vity

and a carelessly chosen data structure will leave
something out, or fail to distinguish among im-

portant differences, or otherwise have its revenge.

(For instance, if you haven't noticed yet:
we left out legitimacy. For many purposes we
want to know which kings were bastards.)

(Self-test: is five bits long enough to ex-
press the greatest number of months any English
monarch reigned? -- see "Binary Patterns." Or
do we have to fix this data structure on that
score also?)

To give you & sense of the sort of program
this data structure allows:

A program to ascertain how many kings
were the sons of kings would look at each entry
that had & monarch number, test whether the
monarch was male, and if male, would look at
the male parent's serial number. Then it would
look up that parent's entry, and see whether it
in turn had a monarch number, and if so, add
one to the count it was making. Then it would
go back to the entry it had been looking at,
and step on to the one after that. '

This is actually a pretty lousy data struc-
ture. The clumsiness of this approach to such
data-- and you are welcome to think of a better
one-- shows some of the difficulties of handling
complex data about the real world. Things like
lengths of names and numbers of relatives pro-
duce great irregularities, but make these kinds
of data no less worth of our attention.

We could add lots of things to our data
structure (and so make it more unwieldy). For
instance, we might want to mark each serial
number specially if it referred to someone who
was the offspring of a monarch. We could sim-
ply set a particular bit to 1 in the serial number
for them (called a flag or tag). We could also flag
dates and genealogies that are regarded as un-
certain. There is no limit to the exactness and
complexity with which information may be ﬂT
resented. But doing it right can, as always,
be troublesome.

A lot of computer people want to avoid
dealing with complex data; perhaps you can be-
gin to see why. put we must deal with the
true complexities of information; therefore lan-
guages and systems that allow complex informa-
tion structures must become better-known and
easier to use.

THE FRONTIER: COMPLEX FILE STRUCTURE

The arrangements of whole files-- groups
of records or other info chunks-- are up to the
programmer. The structure of files is called,
not surprisingly, file structure, and it is up to
the programmer to decide how his files should
be arranged.

Habits die hard. The notion of sequence--
even false, imposed sequence-- is deep in the
racial unconscious of computer people. An inter-
esting concrete term shows this nicely. Because
computer people often think any file should have
a basic sequence, they use the term inverted
file for a file that has been changed from its
basic sequence to another sequence. But increas-
ingly, all the sequences are false and artificial.
Where now are inverted files? All files are in-
verted if they're anything.

Fortunately, the final frontier of data
structure is now increasingly recognized as the
control of complex storage of files on disk mem-
ory. The latest fancy term for this is data base
system, meaning planned-out overall storage that
you can send your programs to like messengers.

The fact that IBM now has moved into this
area (with its intricate "access methods" and all
their initials) means complex storage control has
finaily arrived, although the pioneering work
was done by Bachman at GE some years ago
(see bibliography). Till the last few years,
external storage, with pointers and everything,
has not been conveniently under the programmer's
control except in crude ways. Finally we are
seeing systems beginning to get around that
automatically handle complex file structures in
versatile ways that programmers can use more
easily.

theologians."
Charles W. Bachman

(piece cited in Bibliography)

Remember the song that had
a pointer data structure?

(in alphabetical order)

ANKLE BONE
BACK BONE
FOOT BONE B
——> HEAD BONE
HIP BONE
KNEE BONE
NECK BONE
SHIN BONE
SHOULDER BONE
THIGH BONE

BIRLIOGRAPHY

Malcolm C. Harrison, Data-Structures and
Programming. Scott, Foresman, 1973.

~+This book can be recommended to
ambitious beginners. It has useful sum-
maries of different languages, as well as
fundamental treatment of data structures
as they intertwine with specific languages.

An obscure and intricate study of the inter-
changeability of data structures-- how they
fundamentally interconvert-- has been the
longtime research of one Anatol Holt, who

calls his work Mem-Theory. Mem is from
memory ., and also, conveniently, a Hebrew
letter.

This is an extremcly ambitious study,
as it in principle embraces not just much
or all of computer science, but perhaps
mathematics itself. Math freaks attention:
Holt has said he intended to derive all of
symbolic logic and mathematics from
relations and pointer structures. Let's
hear it for turning Russell on his head.

I don't know if Holt has published
anything on it in the open literature or not.

However, he does have a game
available which seems weirdly to embody
these principles. The game of Mem is
available for $6.50 postpaid ($6.86 to
Pennsylvanians) from Stelledar, Inc.,

1700 Welnut St., Phila. PA 19103. It has
beautifully colored pieces, looks deceptive-
ly simple, and is unlike anything, except
discrete abstractive thinking itself. Recom-
mended .

Charles W. Bachman, "The Programmer as Navi-
gator.” CACM Nov 1973.

Bachman was the prime mover in the
development of large linked disk data sys-
tems at General Electric; he is the Pioneer.
This is about big n-dimensional stuff.

David Lefkovitz, File Structures tor On-Line
Systems. Spartan-Hayden Books, $12.

Alfonso F. Cardenas, "Evaluation of File Organ-
ization-- a Model and System." CACM
Sep 73, 540-548. Not surprisingly, it
turns out that different file organizations
have different advantages.

Edgar H. Sibley and Robert W. Taylor, "A Data
Definition and Mapping Language."” CACM
Dec 73, 750-759.

Example of current sophisticated
approaches: a whole language for nailing
the data just the way it should be. Has
helpful further citations.

28

TRSCIL and c:l\all veceive.”
— e L ‘\40:1'\«7

ME TIMES (T JVST $1T5 THERE
SoMETMES 1T colES ANDGOES.

Data usually has to be marshalled into
rows, or even regiments and battalions, before
it can go into a computer.

(Some people just get their data into a
computer by sitting at a terminal and typing
it in, perhaps answering questions typed to them
by a front-end program. But they're the lucky
ones. Most of us have to get the data set up
on some kind of holding surface before it gets
fed in. That's an input medium.)

DATA MEDIA

A data medium ("medium” is the singular
of "media") is anything that holds the marks of
data outside the core memory of a computer.
Thus punched cards and punched paper tape
may be used as input media, used for putting
information into a computer. (Each medium
needs a corresponding ingut or output device,
to whisk across the surface and translate its
marks or holes into the corresponding electronic
pulses.)

There are three types of data media:
input, output and storage media. An input
medium carries the data in. An output medium
receives the results of a program; for instance,
a sheet of paper coming out of a printing device
is an output medium, as is a punched cerd or
punched paper tape.

Storage media are output media that may
be used as input media later on. Thus punched
cards and punched paper tape cen be storage
media. But the better storage media use mag-
netic recording (which is faster and less bulky),
like magnetic tape and disks, or just plain
"disks" as we generally call them. (See fuller
list of mag media under "Peripherals,” p. 57 .)

The units and arrangements of data used

for inj t, ouggu and storage are in grmcxgle

used by the program. The blocks and records
of storage, for instance, may have irregular
date with pointers sitting in them. (Unfortun-
ately there is some carryover, in that program-
mers are tempted to use data structures which
are easy to store and run in and out, rather
than handling the true complexities of the sub-
ject. This is always a temptation.)

Let us consider the units and arrangements
of data used for input and output and storage.
These are, respectively, fields, records, files
and blocks.

THE PUNCH CARD

Let's begin with a fun example: that
hoary old medium for input and output, the
punched (or "punch") card. The punch card
will show us what a field is.

The punch card is generally believed to
have been invented by Herman Hollerith (al-
though the author's in-laws had bitter recollec-
tions to the contrary). It was first used on a
broad scale to count up the census of 1890, and
later became an early cornerstone of 1IBM, but
that's another story.

The punches on a card represent a row
of information (such as a row of typed letters).
this is not obvious because the card is a rec-
tangle rather than a line. However, the length
of the card is actually divided into eighty posi:
tions, each of which may hold one number,
alphabetic character or punctuation mark.

These positions are actually narrow columns,
eighty of them, with different positions in which
holes may be punched. One hole in a column
represents a numeral; which position in the
column specifies what number. Two holes in

a column generally mean a letter of the alphabet,
three holes in a column mean a punctuation

mark. "
. PUNCH,
Feeld "‘H‘N-LEK tTH [1Y
A or Igw, m =
Corner u{ —_— TS
s juf so you | \
con koke soig ons H
. avds ave L ‘_::l.& [a
NS E*5N UY/ R | ui::;“;\
wik w o | [
u’m(g A-w-\ “”H[IJ Dt
o Lsctt‘»v\-"\?f ‘ l i j ! ’\
. ° o~ Usniyace cay?
((i»{\'j - Golywmns M‘ M SaR SITL| s
orulry 1f (sFre. Hmu‘) W\' had mt
< -dofesty) N S e oA ko

Teeny

l“:!

prd’

Data is punched into cards according to
some plan associated with the program.

Beyond those simple matters there is no
preordained arrangement for information on a
punch eard; it all depends on what the program
calls for. But each separate piece or section
of information-- each bunch of consecutive
characters that together have a specific meaning
-- are called a field.

A field can be a name, a number, an
amount of money, an alphabetical code repre-
senting something, a numerical code represent-
ing something, or other stuff. When the cards
go into the program, the program can pick off
the information it needs one field at a time--
putting the field in columns 1 to 17 into one
program variable, the field from columns nine
to ten into another program variable, and so
on.

The punch card is an important example
of an input unit influencing the structure of
computer programs. It is convenient to use
fields on a punch card as the basic data struc-
ture of a program and say, "That's the way it
has to be for the computer. In the worst cases
we see the workings of the "punch card men-
tality" or "80-column mind" (see box).

—r People will often thrust a punched data
card at you and ask, "What does this mean?"
Who knows? It may have lettering banged along
the top, showing what characters the holes rep-
resent, but if these characters don’t show any-
thing understandable, such as the person's name,
you're in the dark. The card may have pre-
printed section lines dividing it up, but these
are rarely self-explanatory. It's often im-
possible just to look at a punched card and
tell by eye what the individual fields are for,
or even where they begin and end; all that
depends on the program. Only someone who
understands the program, or at least knows
what fields the card is divided into and what
the characters represent there, can help.

Sometimes, in dismal systems we encoun-
ter day-to-day-- like for university registration
-- a punch card will have a person's name in
the first few columns, or worse, a personal
serial number, Other information continues
from there. These may or may not be recog-
nizable, either from reading the holes by eye,
or from designations pre-printed on the card.

"KSCLL wif”

whit qour compiter

Wil do for you. Y
— IBM

ASCII code. You can figure out from
the table the bit pattern for any letter, or
what any given combination of seven bits
means.

Example. Find the capital letter G
in the table. For the first three bits of the
code, look at the top of the column: 100.
For the next four, look sideways to the
left: 0111. So G is: 1000111.

USA STANDARD CODE FOR INFORMATION INTERCHANGE

(An eighth bit is used as a check on
the number of ones in the code; this is
called the parity bit, and either rounds to
an even number of bits (even parity) or an
odd number of bits (odd parity). Thus if
a code comes through to the computer with
& wrong number of ones, the computer
can take remedial action.)

Those funny multiletter codes are for
controlling terminals and like that.

Pocket card courtesy of Computer
Transceiver Systems, Inc.

MAGNETIC STORAGE

The same principle of fields applies in
other data media, especially magnetic tape and
disk. We may extend the notion of a field to
explain records and files.

A field, generally speaking, is a section
of positions on some medium reserved for one
particular piece of information, or the date in it.

A record is a bunch of fields stored on
some medium which have some organized use.
(For instance, the accounting information held
by an electric utility company about a particular
customer is likely to be stored as a record with
at least these fields: account number; last name;
initials; address; amount currently owed.)

A file is a whole big complete bunch of
information that is stored someplace. In many
applications a file is composed of numerous
similar, consecutive records. For instance,
an electric company may well store the records
for all of its customers on a magnetic tape,
ordered by account number (account 000001
first).

Storing sequences of similar records in
long files is typical of business programs,
though perhaps this should begin to change.

It's especially suited to batch processing,
that is, handling many records in the same
way at the same time. (See "System Programs.")

Now, the divisions of field, record and
file are conceptual: they are what the program-
mer thinks about, based on the information
needs of a specific computer program.

FIvE
Thte
| ——
BlLoex §
evia Kaiv color
me?;aﬂ Th ”a{-g co:
o reowls dra ft Status
Cnm :A;k balawcr
.[e \ape of wose
Fiedds ete.
BLOCKS

A block is something else, which may be
related only to quirks of the situation.

A block is a section of stored material,
divided either according to the divisions of the
data or peculiarities of the device holding it,
such as a disk drive. Short records may be
stored many to a block. If records are long
they may be made up of many blocks.

= In particular, tape blocks can be almost
any size, while disk blocks often have a certain
fixed size (number of characters or bits) based
on the peculiarities of the individual device.
(This can be a pain in the neck.)

On the other hand, due to_the quirks of
magnetic recording, your program usuaily can't
just change something in the middle of a block;
the whole disk block or tape file has to be re-
placed. This is less trouble with a short disk
block than a long tape file.

€A Q¥

TL{ [X-1"N
l;ﬂrTi‘/'ﬂ(‘rI‘ Lloek a"‘ATI‘«(LC)“ \T has Yo
wrife o (Lo
Wlofe. T‘\'LK file

3T once,

e

TRADITIONAL CONVEYER-BELT PROGRAMS

Many traditional business programs are of
this type, reading in one data record at a time,
doing something to it (such as noting that an
individual has paid the exact amount of his gas)
and writing out a new record for that customer
on the current month's tape.

THE PROBLEM

Standardized fields, blocks and records
are often necessary or convenient. But, on the
other hand, the kinds of computer programs
people find oppressive often have their roots in
this kind of data storage and its associated styles
of programming, especially the use of fixed-field
records as the be-all and end-all. The more
interesting uses of the computer (interactive,
obliging, artistic, etc.) use a greater variety
of data structures.

N

People's naive idea of "programming" is often a reasonable
approximation to the notion of "data structure." Data structure
is how information is set up. After it's set up, programs

can twiddle it; but the twiddling options are based on how

the information is set up to begin with.

TIE MASIC OF DATA

How does a computer program
print something out on a printing
machine? It sends the code for each
letter out to the printing machine.

How does a computer program
respond to something a user types in?
It compares the codes that come in
from the letters he types with a
series of codes in memory, and when
it finds a match between letters,
numbers, words or phrases, bran-
ches to the corresponding action.

How does a computer program
measure something? It takes in
numerical codes from a device which
has already made the measurements
and converted them to codes.

—e—
DOES NOT COMPUTE! “

Some TV writer's
idea of a computer
announces this when
data are insufficient or
contradictory. Ho hum.

___—)V\—~

Coped-HOWN DATA:
AN 1DEA WHOSE TIME
HRS PASSED

Codes are patterns or symbols which
are assigned meanings. Sometimes we
make up special codes to cut down the a-
mount of information that has to be stored.
On your driver's license, for instance,
they may reduce your hair color to one
decimal digi: (four bits of information),
since there are less than nine possibilities
for quick identification of hair-color anyway.

Obviously, codes can be any darn
thing: any set of symbols that is less than
what you started with. But by compressing
information they lose information, so that
subtleties disappear (consider the use of
letters A to F to grade students). When
you divide a continuum into categories, not
just the fewness of the categories, but the
places you draw the line-- called "breaks"
or "cutting-points"-- present problems. Such
chopping frequently blurs out important dis-
tinctions. Coding is always arbitrary, fre-
quently destructive and stupid.

Lots of ways now exist to handle writ-
ten information by computer. These often
present better ways to operate than by using
codes of this type. But many computer pro-
grammers prefer to make you use codes.

(NOTE: there are two other senses of
"code"” used hereabouts: 1) the binary pat-
terns made to stand for any information,
especially on input and output; 2) what
computer programs consist of, that is, lines
of commands.)

JOME POINTS

"Logical deduction” really consists of tech-
niques for finding out what's already
in a data structure.

"Logical inconsistency" means a data
structure contradicts itseif. Rarely
does it happen that a computer helps
you diseover something new about a
subject that you didn't suspect or see
coming without the computer; after
all, you have to set up a study in
such a way as to make room to find
things out, and you can only make
room to find some things out.

THE PUNCH CARD MENTALITY

Punch cards are not intrinsically evil.
They have served many useful purposes.
But the punch-card mentality is still around.
This will be seen in the programmer who
habitually sets things up so we have to use
punch cards (when other media, or inter-
active terminals, would be better); who in-
sists on the user or victim putting down
numbers (when with a little more effort the
program could handle text, which is easier
for the human, or even look up the infor-
mation in data it has already); who insists
that people's last names be cut down to
eleven letters because he doesn't feel like
leaving & longer field or handling exceptions
in his program; who insists on the outsider
cutting his information into snarfy little codes,
when such digestion, if needed at all, could
be better done by the program; and so on.

The punch card mentality is responsible
for many of the woes that have been blamed
on "computers."

IF You WANT NUMBEKS,
WE GOT 'EM

The basic kinds of number operations
wired into all computers are few: just add
(and sometimes subtract) binary numbers.
However, up sbove the minicomputer range,
a computer may have multiply, divide, and
more. Fancier computers offer more types
and operations on them.

PLAIN BINARY-- Very important for coun-
ting. Represents numbers as
patterns of 1's and 0's (or X's
and Ohs, if you prefer). How
to handle negative numbers?
Two ways:

TRUE NEGATIVE-- binary number
with a sign bit at the begin-
ning, followed by the number.

#*

5 KMED

Trouble is, the arithmetic is

harder to wire for this kind,

because there are two zeroes

(plus and minus) between 1

and -1.

ADDABLE NEGATIVE-- this system
does a sort of flip and begins
a negative number with all
ones. It means that the ma-
chine doesn't have to have sub-
traction circuitry: you just add
the flipped negative version of
a number, and that actually
subtracts it., This has now
caught on generally. dt's
usually called "twos complement
negative,”" which has some ob-
scure mathematical meaning.)

BCD {Binary-Coded Decimal)-- the accoun-
tant's numbering system. Used by
COBOL (see p. >}). It's plain old
decimal, with every numeral stored
in four bits; the machine or language
has to add them one numeral at a
time, instead of crunching together
full binary words.

FLOATING POINT-- the scientist's number
technique for anything that may not
come out even. Expresses any
quantity as an amount and a size.

I I |
v~ NN

. Size amounr
(oPh resped (rmesnls)
decinnad ym"'\r)

The "amount" part contains the ac-
tual binary numerals, the "size" is
the number of places in front of or
after the decimal point that the num-
ber starts. Very important for as-
tronomical and infinitesimal matters,
since a floating-point number can be
bigger, say, than

9,876,543,210,000
or smaller than
.00000001234567

For some people even this isn't pre-
cise enough, so they program up
"infinite precision arithmetic,"” which
carries out arithmetic to as many
places as they want. It takes much
longer, though.

WHAT'S AVAILABLE IN
MACHINES AND LANGUAGES

Some machines, like the 360, are
more-or-less wired up to hendle several
number types: binary, floating point, BCD.
Little machines usually only have plain bin-
ary, so other types have to be handled by
programs built up from that fundamental
binary.

Languages make up for this by
providing programs to handle numbers in
some or all of these formats. There are
languages that offer even more kinds of
numbers--

IMAGINARY numbers
(two-part numbers
following certain rules)
QUATERNIONS
(like Imaginary numbers
but worse)
and goodness knows what else.

On the other hand, some languages
restrict what number facilities are avail-
able for simplicity's sake. BASIC, for
ingtance, doesn't distinguish between
integers (counting numbers) and those
with decimal points; all numbers msay have
decimal points. TRAC Language only
gives you integers to start, since it's easy
enough to program other kinds of number
behavior in (like infinite precision).

For historical reasons computers have
been used mostly with numbers up to now;
but that is going to be thoroughly turned
around. Within a few years there may be
more text-- written prose and poetry--
stored on computers than numbers.

During the recent massive lawsuit by
Control Data against IBM, it was revealed
that IBM had an awesome number of letters
and communications stored on magnetic
memory .

When 1 lived in New York, I had a
driver's license with the staggering serial
number

NO 5443 12903 3-4121-37

Now it may very well be, as in some
serial numbers, that information is hidden
in the number that Insiders can dope out,
like my criminal record or automobile acci-
dents, if any. (N is my initial, and two
of the digits show my date of birth, a handy
check against alteration by thirsty minors.
But the rest of it is ridiculous.) The fact
that that leaves 15 more decimal digits means
(if no other codes are hidden) that New York
State has provision in their license numbering
for up to 999,999,999,999,999 inhabitants.
It, is doubtful that there will ever be that
many New Yorkers, or indeed that many
human beings while the species endures,

In other words, either New York
State is planning on having many, many
more occupants, or an awfully inefficient
code has been adopted, meaning a lot of
memory space is wasted holding those
silly big numbers for millions of drivers.
However, that doesn't represent & lot of
money. 10 million decimal spaces these
days fits on a couple of disk drives. But
it's an awful pain in the neck when you
want to cash a check.

INFUT &S OUTRUT Copts

Data has to get inside the machine
somehow, and results have to get back out.
Two main types of codes-- that is, stan-
dardized patterns-- exist, although what
forms of data programs work on inside
varies considerably. (The input data can
be completely transformed before internal
work starts.)

1. ASCII (pronounced "Askey,"
American Standard Code for Information
Exchange. This allows all the kinds of
numbers and alphabets you could possibly
want (for instance, Swahili) for getting
information in and out of computers.

ASCII is used to and from most
Teletype terminals and keyscopes.

However, ASCII is also used for
internal storage of alphabetical data in
many non-IBM systems, andit is also the
running form of a number of programming
languages, such as TRAC language (see
p.19), TECO (s8&=p<=_). and GRASS
(see p.!el).

IBM's deliberate undermining of the
ASCII code is a source of widespread anger.
(See IBM, p.52,.)

2. EBCDIC (pronounced "Ebsadick,™)
Extended Binary Coded Decimal. This was
the code IBM brought out with the 360,
passing ASCII by. (IBM seems to think of
compatibility as a privilege that must be
earned, i.e., paid for.) EBCDIC also al-
lows numbers, the English alphabet, and
various punctuation marks. This is used
to and from most IBM terminals ("2741
type").

4] Hse:

HOLLERITH, meaning the column
patterns that go in on punched cards.
(They can also come out that way, if you
want them to.)

CARD-IMAGE BINARY. If for some
reason you want exact binary patterns
from your program, they can be punched
out as rows or columns on punch cards.

STERLING. Just to show you how
comical things can get, the original PL/I
specifications (see p.3‘) allowed numbers
to be input and output in terms of Pounds,
Shillings and Pence (12 pence to the shil-
ling, 20 shillings to the pound). No pro-
vision was made for Guineas (the 21-shil-
ling unit), or farthings, unfortunately.

30

IMGIC. HANGAGES

A computer language is a system for casting spells.
This is not a mctaphor but an exactly true statement. Zach
language has a vocabulary of commands, that is, different
orders you can give that are fundamental to the language,
and a syntax, that is, rules about how to give the commands
right, and how you may fit them together and entwine them.

Learning tc work with cne language doesn't mean
you've learned another. You learn them one at a time,
but after some experience it gets easier.

There are computer languages for testing rocketships
and controlling oi) refineries and making pictures. There
are computer languiges for sociological statistics and designing
automobiles. And there are computer languages which
will do any of these things, and more, but with mcre difficulty
because they have no purpose built in. (But each of these
general-purpose languages tends to have its own cutlock.)

Most programmers have a favorite language or twe,
and this is not a rational matter. There are many different
computer Janguages-- in fact thousands—- but what they
all have in common is acting on series of instructions.

Beyond that, every language is different. So for each language,

the questions are

WHAT AKE THE INSTRUCTIONS?
and
HOW DO THEY FIT TOGETHER?

Most computer languages involve somehow typing
in the commands of your spell to a computer set up for that
language. (The computer is sct up by putting in a bigger
program, called the processor {or that language.)

Forfran Maelne 1&\&3\\\4;\: Mackine
3

©foocoecocsoconoonC oo ocooccec000000

R R AN RN

RNy

.95 YN wy
;:;ﬁ;cuf ;?yu;; e proccsss Joaded

w oz core ne»’w])
Then, after various steps, you get to try your program.

Once you know a language you can cast spells in
it; but that doesn't mean it's easy. A spell castin a computer
language will make the computer do what yeu want--

IF it's possible to do it
with that computer;

IF it's possible to de it
in that language;

IF you used the vocabulary
and rules of the language
correctly;

and IF you laid out in the spell
a plan that would effectively
do what ycu had in mind.

BUT if you make a mistake in casting your spell, that is
a BUG. (As you see from the i¥s aLove, many types of
bug are possible.) Program bugs can cause uniortunate
results. (Supposedly a big NASA rocket failed in takeoff
once because of a misplaced dellar sign in a program.)
Getting the bugs out of a program is czlled debugging.
It's very hard.

DESIGNING COMPUTER LANGUAGES

Every programmer who's designed a language, and
created a processor for it, had certain typical uses in mind.
If you want to create your own language, you figure cut
what sorts of opcraticns you would like to have be basic
in it, and how you would like it all to fit tegether so as
to allow the variations you have in mind. Then you program
your processor {which is usually very hard).

#r b INTERPRETER X

carries out each instruction
as it's encountered.

—_—

Lo

¥ A COMYILER®

chews the instructions
of the language
into another form
to be processed later.

& Ide\'rn‘\ev carnes 00T ,

ﬁCmrilw sels “%.

How bo
CompoTeR (GURGS
WORK ™7

Basically there are two different methods.

A compiling language, such as FORTRAN or COBOL,
has a compiler program, which sits in the computer, and
receives the input program, or "source program,” the way
the assembler does. It analyzes the source program and
substitutes for it an object program, in machine language,
which is a translation of the source program, and can actually
be run on the computer. The relation of the higher language
is not one-to-one to machine language: many instructions
in machine language are often needed to compile a single
instruction of the source program. (A source program of
100 lines can easily come out a thousand lines long in its
output version.) Moreover, because of the interdependency
of the instructions in the source program, the compiler
usually has to check various arrangements all over the
program before it can generate the final code.

Most compilers come in several stages. You have
to put the first stage of the compiler into the computer,
then run in the source program, and the first stage puts
out a first intermediate version of the program. Then you
put this version into a second stage, which puts out a second
intermediate version; and so on through various stages.
This is done fairly automatically on big computers, but
on little machines it's a pain.

(In fact, compilers tend to be very slow programs;
but that depends on the amount of "optimizing" they do,
that is, how efficient they try to make the object program.)

An interpretive language works differently. There
sits in core a processor for the language called an interpreter:
this goes through the program one step at a time, actually
carrying out each operation in the list and going on to the
next. TRAC and APL are interpretive; it's a good way
to do quickie languages.

Interpreters are perhaps the easier method of the
two to grasp, since they seem to correspond a little better
to the way many people think of computers. That doesn't
mean they're better. For programs that have to be run
over and over, compiling is usually more economical in
the long run; but for programs that have to be repeatedly
changed, interpreters are often simpler to work with.

A BLACK ART

Making language processors, especially compilers,
is widely regarded as a black art. Some people have tricks
that are virtual trademarks (see below).

Actually, the design of a language-- especially the
syntax, how its commands fit together-- strongly influences
the design of its processor. BASIC and APL, for instance,
work left-to-right on each line, and top-to-bottom on a
program. Both act on something stored in a work area.
TRAC, on the other hand, works left-to-right on a text
string that changes size like a rubber band. Other languages
exhibit comparable differences.

MIXED CASES AND VARIATIONS (for the whimsical)

There are a lot of mixed cases. A load-and-go compiler
(such as WATFOR) is put into the computer with the program,

compiles it, and then starts it going immediately. An interpretive

compiler looks up what to do with a given instruction by in-
terpreting it into a series of steps, but compiling them instead
of carrying them out. (A firm called Digitek is well known

for making very good compilers of this type.) An incremental
compiler just runs along compiling a command at a time;

this can be a lot faster but has drawbacks.

BIBLIOGRAPHY .

David Gries, Compiler Construction for Digital Computers.
Not for beginners, but a beautiful book. Good on
abstract theory of languages, too.

A program is like a nose;
Sometimes it runs, sometimes it blows.

Attributed to Howard Rose.
(Datamation, 1 Sep 71, 33.)

According to the grapevine. ..

a prestigious Southern university
had a program
where the number of months
was carelessly set to 10
(as a dimension in an array).
In November,
nobody got their checks
till this error was found.

candid photos

Debugging means changing and fizing your program tili it works the way yox
want it to.

This is the part of programming people like the least.

You run your program and them try to find out what went wrong. It could Ee
a mistake in the basic thinking ("logic error’), or a clerical error in the
particular choice of commands to carry out a well-thought-out process
("eoding error”).

Some systems allow you to debug interactively, from a
a lot. You can run parts of your program, get it to stop at certain points
to let you look around, and so on.

For every bug that goes out,
No program is ever fully debugged. two more bugs go in.

-- folk saying -- folk saying

THE GRE
Cowé‘é' (NGUAGES

A certain number of computer languages
are very widely accepted and used; I list them
here. If you want to learn any of them, I believe
that Daniel McCracken has written a manual on
every one of them. (Not the variants listed,
though.)

Why their names are always spelled with
capital letters I don't know. (Generally they
get let down in longer articles, though.)

Old

RIREN

FORTRAN was created in the late fifties,
largely by John Backus, as an algebraic pro-
gramming system for the old IBM 704. (However,
the usual story is that it stands for FORmula
TRANSs]ator.)

Fortran is "algebraic," that is, it uses
an algebraic sort of notation and was mostly
suited, in the beginning, to writing programs
that carried out the sorts of formulas that you
use in highschool algebra. It's strong on num-
bers carried to a lot of decimal places ("scientific"
numbers) and the handling of arrays, which is
something else mathematicians and engineers do
a lot (see Arrays under BASIC).

Fortran has grown and grown, however;
after Fortran I ceme Fortran II, Fortran III and
Fortran IV; as well as a lot of variants like
Fortran Pi ("irrational, and somewhere between
Il and IV"), WATFOR and WATFIV.

The larger Fortrans-- that is, language
processors that run on the bigger computers--
now have many operations not contemplated in
the original Fortran, including operations for
handling text and so on.

BASIC, presented earlier, is in some res-
pects a simplified version of Fortran.

AGOL [o8T,
Ay PL/T

ALGOL is considered by many to be
one of the best "scientific" languages; it has
been widely accepted in Europe, and is the
standard "publication language" in which procedures
for doing things are published in this country.
It is different from FORTRAN in many ways,
but a key respect is this: while in FORTRAN
the programmer must lay out at the beginning
of his program exactly what spaces of core
memory are to have what names, in ALGOL
the spaces in core memory are not given names
except within subsections of the program,
or "procedures." When the program follower
gets to a specific procedure, then the language
processor names the spaces in core memory.

This has several advantages. One is
that it can be used for so-called "recursive"
programs, or programs that call new versions
of themselves into operation. I guess we better .
not get into that. But mathematicians like
it.

Originally this language was called IAL,
for International Algebraic Language, but then
as it grew and got polished by various inter-
national committees it was given its new name.
(I don't know if anyone consciously named
it after Algol, the star.)

It has gone through several versions.
Algol 62, the publication language, is one
thing; Algol 70, the 1970 version, is much
more complicated and strange.

Several versions of ALGOL have gotten
popular in this country. One, developed at
the University of Michigan, is called MAD
(Michigan Algorithm Decoder); its symbol is
of course Alfred E. Newman. Another favorite
(for its name, anyway) is JOVIAL (Jules' Own
Version of the International Algebraic Language),
developed under Jules Schwartz (and supposedly
named without his consultation) at System Devel-
opment Corporation.

When IBM announced its System 360 back

in 1964, there had been hope that they would

pport the int tional language committees
and make Algol the basic language of their new
computer line. No such luck. Instead they
announced PL/I (Programming Language I),
computer language that was going to be all
things to all men.

In programming style it resembled COBOL,
but had facilities for varieties of "scientific"
numbers and some good data structure systems.
It is available for the 360 and for certain big
Honeywell computers; indeed, the operating sys-
tem for MULTICS (see p. 45) was written in
PL/I. Whether there are people who love the
language I don't know; there are certainly
people who hate it,

/7 008 1 INUSEENUSE 01 MAY 73 02,360 HRS
// ACT wewsx 0L MAY 73 02,360 WRS
71 FOR PHONE Y 73 02.360 MRS

$10CS(1443 PRINTFR,KEYBOARD)

SLIST ALL

SONE WORN INTEGERS
ALPHABETIC PHONE NUKAER PROGRAM
DIMENSION JCT1,NUMBIT),LETT{3,10),LINEZ132),INCBD) JNUN(10)
DATA NW/3/.NR/10/4INL/BO/, LINL/1207

c READ PHONE NUMBER AND TITLE LINE
10 REAOINR, 11D (INETHy Ix14INLY
11 FNRMAT(AOAL}

3 FIND LAST unn—sunx IN FITLE LINE
0o 12 l-l.l
kel

2=
l‘llNiK) 1RL113,12,13
12 CONTINIE
WRITE TIFTLF LINE
COMPUTE STARTING POINT ON PRINY LINE
13 LINX=(K/Bs1)28
WRITEINW, 16D L INETN,lwleX)
16 FORMAT(17,20811
4 CONVERT ALPHA PHONE NUMBER TD NUMERTC
0N 1A [=1,7
IN1=INT])
B0 15 xsl,10 Circle.
TFEENL-NIIMIK)) 15,164,198
15 CONTIMGE
16 NUMB{])=K-1
c BLANK PRINT LINE
PN 1 i1=1,4LINL
1 LINEILL)21RL

oa

automatica

JE2)ELETTI12,K)
A 21,3
KeNUMB(3)1
JUIRELETT(T3,K)

PR 6 1=

K=HUMR(4)+1

G =LETT(T4e%)

N 6 15=1,13
X=NUMB{$)+ 1
JUSIxLETT{IS,K)

BN 6 16x1,3
KENUMB(6)]
thi-LFYHls.Ki

DN & 1771,
K-mnaﬂlo\
JUTIELETTII74KD
IFELINXAT=LINL 44,2

01 MAY T
PAGE 60

2 WRITF(NW,3) (LTNE(L}y La1yLINK)
3 FORMAT{1X, 13281}

7 WRITFINW.3HOLINECLD, L=d, LINKE
10
8 CALL EXIT
END

VARIARLE ALLOCATIANS
Jr

ly.

3
2

NUMB (T 7 LETT(L) LINEIE)

INL2(1 }=0104
LINX(T 120110
1341 1%0116

INLIT 120108
N®(])=0111
1415 1=0117

NR(§ b=a10C 1)1=0100
INLUT)=0112 110 1=0113
I5¢1 1=011A 1641 3=0119

STATEMENT ALLOCATIANS

11 0126 14 30127 3 =012C 10 =Di36 1?2 =0162 13 =01&A 15
4 ®02AF 5 x0289 & %0202 T =O31B 8 =0334
FEATURES SUPPORYFD
ONE WORD INTEGERS
10cs.
CALLED SUBPROGRAMS
ISTAX NREN MWRT MCOMP MIOIX SUBSC TYREN HOLEB PRNTN ERPRT
INTEGER CONSTANTS
12011€ Ar011F T=0120 10x0121 3e0122 0=0123
cnls lsmnsnems FOR PHONE
INSKEL COMMON Q
vuusus 286 PROGRAM 538

END OF COMPILATION

Behold some

FEIIMAX EGHIVAL ELITMRD ECNTwAK

JI0CC FRNINADT ERINNnAK
UAMAL FCYRNEY FRUAMEK
ERYGNAP FOILAAL O |
ERVAMCK EGURMCL EGVINAY ECYHNAK
FGYRNAL ERVMNCS EGYHILK
EGUINAL EGVINB) EGVINAK
Eoy NGO EHTRmAL
EHTRNRL FRTGNCS FHTRNCK EHTGRAY FHTEN AL
EHTHMAL EMTHURK FHTHMAL EMTHMC) EHTHMCK FHTIMEY
FHTHMC L ERTHMAK FUTHNAL ERTHARL
FHTTHAL EHTIMCK EHTIMCL FHTINAY FHTINAK EWT Mzl
EnTI08L EHTINAK EWTIOAL FWTINCY FHTINCK FHTIACL
ErmiGue L ERURNAK FHICMAL ERUCARY EHDGNAK EHIAHAL
FHUGORL FUUGNC.) FHIGOCK FMIGICC EHIMALL EHIRRBK FRtliin)
FHUHHAL EMIMNRK EHIIMPHL FHURKC S FRIMBCK RRIs |
EruRAG (FHOTMAK £BOTHAL FUIIMRY FRITMRK FrapTeng
FHILINAL EMVINCS ENUINCK EHIINCL FHITOAS ERITDAL FRIIAAL
FUVGHAL FMYGMAS FUVGNAK EHYGHAL ERVAMCS RHVRNCK FHYORT{
FBYGNCL EHVAOAS EWVGIAK FHVGNAL FRVROR) FHVGDRK §vnnpl
FHVMMAL FHVHMEK FHVOKCL FHVANAY FAYINAK FHUINAS
EHVHAAL EHVHNRK FMVHNAL FHVA(C) EHVHOLK FHVHIICY
EHY [HEL EHVINAK FHVINAL FHVINT) FVINAK FHVINAL
EHyINAL EHYINGK FRyINCL FITEMA) FITAMAK FITAMAC
FITGNAL FITONGL ETTGNAL EITENCY EITONCK FITANCH
£1760CL FUTHMAL ETTHVRY €[THMAK €]Thup)
FITHNAL F1TENC) FITHNCL FITHNA) ETTHOAK FTHNAC
FITIMAL ELTI¥BY < EITIMRL FITIMCJS FITIMCH ETTIMEL
FITINCL FITIN8J EITINAK E1TINAL ETTINRY ETINAK ETVINAL
FINGMAL FIHGMC ETUCMEE FIUCMCL FTNENAT FUIGNAK F 00 AL
EINGNAL FINGORY FLIMNGK ETHENAL ETNONCY FIIANCK £ 110G L
FLUMMCL ETHRNAY ELUNNAK F URDEL FLIUNRY € LUHRAK FEOmNAL € [I9NS 1 E Tk 11
FIUMARL FTUMNCY ETUMNCK FIURAGL FIOTMAY FIUTMAK F10IMAL FIUINAY ETOTHRK ETn[rar
FIUERAL ETIINRY FIMTNSK ELOTSRL FTOTNCS FTOINCK FINTRCL ETOINAY FTDINAK Fl0Inal
FININCL FIVGMAS FIVGMAX FIVEMAL FIVONRY FIVGMAK FIVLARL EIVENC A FIVEMK FTVLANL
ETVGNRL EIVENCS EIVANCK FIVENCL ETVANAD FIVENAK £1vANAL FIVENAL FIVGOAK &]Viaal
FIVHMAL FIVHMR) EIVHMAK £IVHMRL FIVINCS FIvaMCK FIVMME L STVHNAY FTVHNAK F1vemaL
EIVHNCL FIVHNAS E[VUNAK FIVNAAL FIVMNRJ EIVKNRK FIVKDRL £ IVHY, S EJyMACK F |00 (
EIVIMAK FIVIMAL FIVINC) EIVIOCK £IVIMCL FIVINAL FIVINAK FIVINAL FIVINAL F{VINAK FIVISAL
EIVINAK E[VINAL FIVINAY FIVINAK EIVIOAL FIVINCS EIVINCK €1VINCL FETAMAY FGTOMAK FGTLMAL
ERIGHOK EGTGHCE FGTANSY ¥ EGIGNAL £GTENAY ERIGHAK FOTEMAL FGTGNCY FATAACK FOTGNCL
EGTGNAK EGTGNAL FATENCY FGTANCK FGTANCL FOTRMAY FRTHMAK FGTHMAL FATHMAL FATHIAK ERIMMAL
FGTHNAK FGTHMAL FRTHNB FGTHNAK FRTHNAL FETHNCS EGTHNAY FRTHDAK EATHNAL
FGIMACK EGTHNCL FGYTMAS FGTIMAK FATIMAL FGRTIMA) € EOTIMCJ FGTIMK FGTIVCL
FRTINAK FGTINAL FRTINCS EGTINCK FGTINCL FETINAY
EGIGYAK FGHGMAL FGUGHAL FGUGMRK FLUCMRL FRIGC
EGUGNCK FGUGNCL FGUGDAJ FGUGNAK FRUGOAL FEIIGNa ®
EGOMMAK FGUMMBL EGUMMC) FLUMMIK FGUMMCL EGUMIAD URNAY
FOUKNAK EGUHNAL EGUMNAL EGUMDRE ERNMRL FEHROC FRImnCE

FENIMRL FEUTNE) b iete 1 ey
FETNAL ERNINAY EGIMIEK ECHER)
EAVGMLT FRVENAY FRYGNAK FGVANAY
LV EOVGNET BV e Tt 1
© FEVLRRY FOyLNRK FOyins|
EGVI4A Ervimax FRvivat

FOVINRL FEVINEY Eavined
EuT MR) FRTCMRL

EETOPRD i e ey
SEUINGY EGNINCK FRINNG L
HRY FGVGMIK EGYONAL
N I

3
2
2

FRVIHRY FOUTNAK Waviwa]
FOVINSD €AVINAK FOVIRAL
FHTOME) ERTANTK FRTLLOC L
FHIRAAY FHIGNAK EMTARIRL
FUTHNAD FHTHAAK ENTINAL
FHTHGC. FHTHS K FRTHAC L

A ENTIwAK FHTTARY

A i SR
KRUTNE) FHUTWC X EHIS M [
EMUINRD EunTNR £uisinRy
EVUANAD FUVEMAK FRYENAL
FHYANC) EMVEIT K FUVAY L
FHYMNP) EHYMDAK £ layima
FUVIMAS FRVIFAK buvTmal
EMYING 5 EHVIM K SmvnC
FITAMRY FITRMAK £ TiMRY
FTTANAD FITENAK FITANEY
ETTHNG Y EITHMIK FTTHNCL
FITHARY E1THIRK £ THAR[
FITINAL EITERAK FITINAL
FITINGD ¥ITI0CK FITINCL
EINANAY FIunNRK ELimhnl
FINHMAL £ 1IHBAK € [1HMA]

€ TVHMAK
ELVHMCK

a

FGUTMEK FGUIMCL FGUINAJ EGUTNAK EGDINAL FOUINRD ERIIMAK K 2 :
FGUIPAK FGUINAL EGIINCY FAUINCK FRIINCL FRVRHAD FOVAMAK FGVGMAL FOVUSRK FAVOCR(
FGVGWAK FGVGNAL FGVGNBY FGYANAK FRVRNAL FGVONCY FRVGNCK FOVONAD FOVINAK FGVENAL

FGVONEX FGYRNCL FOVHMAS FGYMMAK FOYHMAL FOVRNRS FRVHMRK
FGYHNRK FGVHNRL FGVHNCS FGUHNCK FGYHNCL FAVHNAJ FOVHNAK
FEVIMAK FGVIMAL FGVIMBJS FGVIMRK FOVIMAL FuVIMCJ FRVIMCK
FGVINCK EBYINCL EGYINAJ FGVINAK FGYINAL FOVINAY FGVINAK
FHTGMBK FHTGMAL FHTGMCS FHTGMCK FHTGMCL EMTENAK
FHTGNAK FHTGOAL FHMTGORJ FHTGOAK FMTGARL FHTHNCU FHTRNCK EHTGOCL

FEVENG) F AWM K FOVaug [
EEVHNAL FRYMRAK FRVHNAL
FEVINAY FAVINAK FRVINAL
FOVIOCS FRYIACK FOVINCL
FHTGNRJ FHTZNAK FHTGNAL
FHTHRAS EHTHMAK FHTHMAL

Below: Nelles' program to caleulate the date of Easter.
The language is Algol.

v

— T

LEVFL 1 J'VU)T

\HS ALGOL F

. B 57 D T SMURCE eRNGRAM
sc SURCE STATEVENT

UTSTRING (14 ¢ CPORIGINALITY 10)3 SYSACTLL, 15, 1)

108 FRTINAK ERTINAI €

g N1)
K(1)=010E
LINLT 120114

P7UD 1=011A

20144

16

ECUAMA) E
Eeunn)

P inng
EHTENA
BTG)
ErTeiRg
EMTIMAY

(TN
£REsAL
FRUCOAS

Feling g
fuutnty
EMVENAY
Eryima)
FHVhG)
T
Fuvinag
FrTaM Y
Friana)
FITHNAY
E1TWNC
ALY
FLIGHAY

FronnT

3

FlUHMR)
ETumnAY
FITMe)
FTinRy
Flvenay
AN
FIVIRRY
ETvIMAY
FIVINGY
ERTGMRY
FOTenay
FaTimey
FRTHORY
FGTINAY

4 FOVHNAK

FOVINRY
FHTGMAY
FHTON S
FHTHMRY

anenn 'REGIN' ’[‘WFG"R' VEAR[.VFAR’.SU"S(R' START: ININTEGER{O,YEAR])S _
aeen> THINTIOTRIOYFARZES 'TF' YFARIDYEARY? ' THENY *¢nQTD' FXITH,

0G4 i SuRee TARZ-YHAR 1411 : ‘

nonns i IPEGTIMY VINTEGIRY CHRYRGOTNT (ML A1 0 (0, F VAY, XS

Ralalals 1 _' VINTIGFRY CARRAY' FASTFR(/1:SUDSCR,1:22/)3

noen? TINTEGER® YPRNOCFNURE . MAD{ X,Y) 3 'INY[GFR Xa¥3

oonge X-¥x{Xt/1¥) 5 LYRYR EA™ 15 <AY:

‘anery T =CURYR /11007 M 5+CENT- C"IT‘/‘A—(B*CFNY'}J)’/'
i T A+CEMT=CENTI /%41 AT=MODICUIYR.4) 5

HI=MON{CURYR,T)}

50T 6

=0183 1

Enun

FHT Dk

EHT AW

S TAK

Ertanay

£

This program was a surprise from
Alan Nelles, a student at Chicago
He was amused by my prac-
tice of alphabetizing phone num-
bers, and wrote a program to do it

Premises of the program: you sup-
ply it with your phone number, and
it prints out all the alphabetical
combinations that could also be
dialled to reach your telephone.

(U\J&IAJQ: Forbray.

NUMIT 120109-0100

18LET b=D10F
1201 1=0115
LEL h=0118

%01C8

2 0294

of the combinations. The recipient picks out the one he likes from % pages of them.

£LUIASL ERYINCY
EnTava)
enranzl Lreay
FHTHNAK €11Tamui Eyme
iAK EWTINAL FHY Thy
FUTINIL EWTINA)
eRirvnl Euicv ey
1AL FHURNR]
FRIENG L EHBENZ Y
Emminug FHmT)
EuiNaL Frariney
Funn1any cuenna)

K EMENRL FRVENL)

ETTG0RK
E1T.mAK
FITH0CK

K Frveeal
Elventy

FTvivaL

EMVMMAL FHvumR)
FHVHETE Fryioa)
Frne IvAL
L
FITReL ErToved
FIILARL FITEncy
EXTHNAL FITWR)
FITwnL B1T1May
EIFIMRL FITINCY
EYURMAL Enanay
ELIGF L FIDANAY
EIIMBL Flommcy
Emnar

FIuINaL Fhijecy
Flufno,
Flvimag
FIVINRL EIvaMCy
E1v (MR
Flvinii sIvinag
FGIGMAL EnToNMEs
FATRRAL E6T,
FOTRWT Y

EaTana)
ERTMARL FRTNNC)
FCTLinL FaTNng

« EquMA(Enay

FEVHNCK
FGV [4RK

FHTGMAX FHTGUSL
FRTGNCL

FUTGRC K

FOUINBL FRITNCY
FaninaL £ol
K

EGUANTL ROVIAAY
FOVINRL FGVINCY
EWTONRY
FHTEAAY

ENTHHAK FWTHMAL FHTHMCJ

DA YF

i
E
§
|
\

ORY

VTHENT

“PAGE 001

FEB or 1970’ !

‘”0"17 AOCECURYR,19); Nr=1arCeM; MO0, 3715
oo PEALLRD4BRY 4 PO{ESTY: .
nnn2? CIFY F=4 TANDY TTHEN' *GOTN' APRLI9: N
00r23 TIEY E=6 TANDY N=28 CANNT (4=2 *OR' M=§ PUR! M=10
L. M=13 AR MzlA TNR* M=2] '02¢ M=24 YNRY M=29) ¢ THEN'
0emY S TGOTNY APRLIBS FASTER{/KAY,1/)1=N+Ee22
nenzs EASTYRIEASTRRI/KAY 2/ HRYR: *TF' CURYRD>=YEAR?
0nnze TGNITTY SIRTT CURY CIP Vs 1] KAYIaKAYe1;
06010 APRL1®:FASTTR(/KAY 17122495 1G0T0" FASTYR:
noesp APRL1IQIFASTER(/KAY,1/) *GOTAY FASTYR: R
Fheras T SART: WENTY KAY:=1 SSTEDC 1 UUNTILTSURNSCR-1 *D0° :
LLIETS v ‘BEGIN' tFOR® =KAVel *STEP' T TUNTIL® SUHSCR 'DO*
nonas T T VIF? FASTIRU/KAY,1/)SEASTFR{/K,1/) ¢ THENY
L r0oRs PERGINY AT=FASTFRR{/KAY,1/9 N
[0003s FASTER[/KAY,1/):=EASTER (/K,1/}3
RLIEYS __ EASTERI/K,1/12=A3 AI=EASTER(/KAY,2/):
onnag” FASTER(/KAY,2/ Ezmsn(/x.?/).)
[non3e . EASTER{/K,2/)t=A *FNDY: o
00040 TERNTL " . I
“oocal __CUTSTRING {1, *{*A, NFLUFS, 4ATH 230, EASTER TABLES')*);
00042 SYSACT{1,15.,11: *FIR® XAYz=1 'STFP' 1 YUNTIL* SUASCR *0O
00043 I _ 1. YREGIN' VIF' EASTER(/KAY,1/1<32 TTHEN' ;
LT R NUTSTRING (L, #{ 'MARCH *) ') *ELSE! e
TREGIN' OUTSTRING (1, *{YAPRIL *)%)5 |
;] CASTERI/KAY /1= EASTER(/KAY, 1/)-31
L LEND 5 MUTINTEGER (10EASTERL /KAY,1/})
DUTINTEGER (1, FASTFRU/KAY .2/ 13SYSACTUL, 15,17
-wo'- SYSACT(14515,1) *END?3 *GNTO? START:
TEND

perfect gense."

31
YedeeH, 11's

CogoL,

Research and hobby types hate COBOL or
ignore it, but it's the main business programming
language. Your income tax, your checking ac-
count, your automobile license-- all are presum-
ably handled by programs in the COBOL language.

COBOL, or COmmon Business Oriented Lan-
guage, was more or less demanded by the Depart-
ment of Defense, and brought into being by a
committee called CODASYL, which is apparently
still going. COBOL uses mostly decimal numbers,
is designed basically for batch processing (des-
cribed elsewhere), and uses verbose and plonking
command formats.

Just because it's standard for business
programming doesn't mean it's the best or most
efficient language for business programming;

I've talked to people who advocate business pro-
gramming in FORTRAN, BASIC, TRAC and even

APL. But then you get into those endless argu-
ments... and it turns out that a large proportion
of business programmers only know Cobol, which
pragmatically settles the argument.

There are people who say they've discovered
hidden beauties in COBOL; for instance, that it's
a splendid language for complex pointer manipulation
(see Data Structures, p. 2{). That's what makes

horse racing.
J&Mc ca// f\be.\’ chUf

<] C Jome call F Hamz

"After you study it for siz months, it makee
--An IBM enthusiast.

JCL is a language with which you submit programs
to an IBM 360 or 370 computer. "Submit" is right. Its
complications, which many call unnecessary, symbolize
the career of submission to IBM upon which the 360
programmer embarks. (See IBM, pp. 52-3, and 360, p. 41.)

SNOROL: -

SNOBOL is the favorite computing language
of a lot of my friends. It is a list- processing
language meening it's good for amorphous data.
(it derives from several previous list-processing
languages, especially IPL-V and COMIT.)

SNOBOL is a big language, and only runs
on big computers. The main concept of it is
the "pattern match," whereby a string of symbols
is examined to see if it has certain characteristics,
including any particular contents, relations between
contents, or other variations the programmer can
specify; and the string substitution, where some
specified string of symbols is replaced by another
that the programmer contrives.

I

is probably the favorite language of the artificial-
intelligence freaks (see P.#M12). A fondnesss for
LISP, incidentally, is not considered to reflect

on your masculinity.

LISP is a "cult" language, and its adherents
are sometimes called Lispians. They see computer
activities in a somewhat different light, as com-
posed of ever-changing chains of things called
"cars" and "cudders," which will not be explained
here.

LISP was developed by John McCarthy at
MIT, based largely on the Lambda-notation of
Alonzo Church. It allows the chaining of oper-
ations and data in deeply intermingled forms.
While it runs on elegant principles, most people
object to its innumerable parentheses (a feature
shared to some extent by TRAC Language) .

Joseph Weizenbaum, also of MIT, has
created a language called SLIP, somewhat resem-
bling LISP, which runs in FORTRAN. That means
you can run LISP-like programs without having
access to a LISP processor, which is helpful.

T\\eN THERE'S ALWAS S
MACHINE [ANGUGT

If you feel like making programs run fast,
and not take up very much core memory, you_go
to machine language, the computer's very own
wired-up deep-down system of commands (see
p. 32,). 1t takes longer, usually, but many peo-
ple consider it very satisfying.

Then, of course, if you have a particular
style and approach and set of interests, you
will probebly start building up a collection of
individual programs for your own purposes.

Then you'll work out simplified ways of
calling these into operation and tying their
results and data together.

Which means you'll have a language of your
own.

32

ROCK FoTiom

THE WORLD BENEATH
™C mcmm WANCURGES

Every computer is wired to accept a spe-
cific system of commands. When these commands
are stored in the computer's memory, and the
computer's program follower gets to them, they
cause it to respond directly by electronic reflex.
This is called machine language, the very lan-
guage of the machine itself.

In most available computers the machine
languages are binary, meaning composed of only
two alternative symbols Binary because it's a

ible way of or i the ine's struc-
ture; it permits programs to be reduced to a
single form of inf: tion, and permits

programs to be stored in binary memory. Each
individual instruction or command ordinarily
occupies one memory slot, though some compu-
ters have commands of varying length.

Different computers have different machine
languages, but the instructions of all computers
are basically similar., Big computers have more
commands, with more variations, and carry
them out faster; but those variations are just
extra ways of saving steps, not qualitatively
different features.

These deep-down operations ARE ALL THE
THINGS THE COMPUTER EVER DOES. However,
in their combinations these instructions can be
woven into chains and diadems of complex actions.

ALL COMPUTER PROGRAMS ARE EVEN-
TUALLY WRITTEN OR ENACTED IN THE MACHINE'S
PARTICULAR BINARY LANGUAGE.

Now, it is entirely possible to write your
programs at this level, considering and arran-
ging rock-bottom commands. This is called

hine-1 e proge ing (and v
prog: i les a little later on).
Indeed, workmg at this level is very highly
respected in some quarters. Others avoid it.
This is a very serious matter of taste and what
you're working on.

Higher-level languages, seen on earlier
pages, have more convenient forms for people,
but must be translated, either ahead of time or
on a running basis, to the bottom-~most codes
that make things happen ih the machine. All of
them are built out of machine language. Writ-
ing the language processors, programs that
enact or translate these higher-level languages,
is considered a black art. (See p.J0.)

Every programmable device has a "machif:e
language,” or rock bottom code system that acti-
vates the thing directly; its program follower
responds electrically to these codes, and enacts
them one instruction at a time.

True are prog devices
that can modify Lheu' own instructions, change
their sequence of operations and do other versa-
tile stuff.

WAT th Copler Bty I

O’wauk ITECJUKE
the Nobs ss

Computers are basically alike. Ignore their
appearances: a roomful of roaring cabinets may
have a great deal in common with a small blinking
box; indeed, they may have the same architecture,
or structure, and therefore be the same computer.

The structure of computers, in their glorious
similarities and fascinating differences, is called
computer architecture.

(For the architecture of a beginner's com-
puter, see p.33; for the architecture of some
famous computers, seejp.40-3.)

Computer architecture covers three main
things: registers (places where something happens
to information); memories (places where nothing
happens to information); their interconnections;
and machine language, &ll the bottom-level instruc-
tions (for this last see "Rock Bottom.," p. 32).

REGISTERS AND MEMORIES

Computers are made, basically, of two
things: registers and memories. A register is
where something happens to information; a memory
is where nothing happens to information. Let's
go over that slowly.

A register is a place where something
happens to information: the information can be
flipped around, tested, changed by arithmetic,
or whatever. (We noted earlier that regxsters
are what a p to its ies.
They are also principal parts of the computer
itself.)

A memory is a place where nothing hap-
pens to information. A program puts the infor-
mation there, and there it stays till some pro-
gram pulls it out again or replaces it.

A main or general register (often called
the accumulator, for no good reason) is where
the program brings things to be worked on,
tested, compared, added to and so on. There
can be several of them in a computer.

Other registers perform other functions in
the P ;& given p s design, or archi-
techture, is largely the arrangement of registers
and the operations that take place between them.

The reason we don't just have all registers--
and no memories at all-- is that registers tradi-
tionally cost more than memories. (However, some
machines are being tried that have all working
registers instead of memory. See STARAN P. "|3 B

Memories come in all sizes and speeds.
So lots of computers have big slow memories,
such as disk memories, along with their small
fast memories.

A memory consists of numerous holding
places or storage locations, each holding one
standard piece of information for the computer,
a word having a specific number of bits (see p.

.) We must stress: a "COMPUTER WORD"
HAS NOTHING TO DO WITH ENGLISH WORDS OR
ALPHABETICAL CHARACTERS. The term refers
to a specific machine’s standard memory slot,
having a fixed number of bit positions.

One important reason for this standardiza-
tion is that each holding place, or memory loca-
tion, can be given a number or address. If
every slot in the memory has an address, infor-
mation can be stored in specific places:

Re

Loaaron

and gotten back out of specific places:

Locarox T4

A core memory has a definite rhythm or
cycle, into which it divides the passing time.
The memory cycle of a core memory is so im~
portant that its duration is often called the
cycle time of the co iter. A request to the core
memory made at .he beginning of the cycle
is honored at the end of the cycle. Core cycles
are very fast, being these days about one
microsecond, or millionth of a second.

A core memory can only perform one act
(store or fetch) during one memory cycle.

Core cycles during which nothing is
requested of the memory simply go by.

One last point about core memories. The
number which specifies an address to the mem-
ory is a binary pattern-- just like all the other
information (see "Binary Patterns,” p. 33).

(Or more exactly, whatever binary pattern is sup-
plied to the memory as the address to store or
from which to fetch, that pattern will be treated
as the address to store or from which to fetch,
that pattern will be treated as a binary number
whether it was supposed to be or not. It could
be the alphabetic word GRINCH which got there
by mistake (see "Debugging." p. &0), but the
memory will treat it as an address number and go
to the address specified by that pattern.

THEN WHAT ARE THE DIFFERENCES
BETWEEN COMPUTERS?

The word length
(number of bit-spaces in a main
register and memory slot)

The number of main registers
and what they can do; i.e., how
they are set up and what operations
can take place in and among them;
ie.,
the Instruction Set (see nearby);

The amount of memory;

The accessories or peripherals;

The cycle time.

Here's the computer, then, in all its glory:

a device with a symbolic program, stored in a
memory, being stepped through by a program
follower.

The commands of the program cause the
program follower to carry out the individual

steps requested by each command of the program.

FU eNYAL
> gﬁe&«mkfs
OF compuye 9

A GREAT MNSTERY
15 ABQOUT To VUNEOLd,

YOUR BASIC COMMANDS, NOW

(Computers exist which do littie more than these,
and yet they can in principle do anything
fancier computers can do.)

TO BE SHOWN: The following are the rock-bottom
basic operations of computers, available as
specific instructions in all computers (with
some variation).

The first seven listed below will be
used in the extended example in the next
spread.

LOAD a binary pattern from core memory to a
main register.

STORE a binary pattern in core memory from a
main register.

SEND OUT ("OUTPUT") a binary pattern to an
external device.

BRING IN ("INPUT") a binary pattern from an
external device.

ADD TWO binary patterns together. (This
causes them to be treated as numbers,
whether they were to begin with or not.)

JUMP--
Go to another part of the program
and forget you were here.

TEST TWO binary patterns against each other,
and branch or not in the program depen-
ding on the result.

NOT TO BE SHOWN: Here are the rest of the

utterly fund of S,
(These are not used in the forthcommg
example .)

TEST ONE SPECIFIC binary pattern, and branch
in the program depending on the result.

SET AN ACCESSORY IN OPERATION/TURN IT OFF.

REVERSE (or "COMPLEMENT") a binary pattern--
changing all the X's to O's and vice versa.

SLIDE (or "SHIFT") a binary pattern sidelong
through a register.

FLIPPER (or "LOGICAL") operations between two
binary patterns, especially--

OR (or "INCLUSIVE OR" or "IOR")--
result is an X where either
original pattern was an X.

AND (or "MASK")-- result is an X
only where both original pat-
terns had an X.

FANCY OPERATIONS

The following operations are desirable but not
strictly necessary, and many computers, es-
pecially minicomputers, don't have them all.

SUBTRACT. (Can also be done if necessary
with combination of adds and flips.)

MULTIPLY. (Can also be done if necessary
with combination of adds, shifts and tests.)

-
DIVIDE. (Can also be done if necessary with
combination of subtracts, shifts and tests.)

MORE FLIPPER ("LOGICAL") operations:

XOR- (or "EXCLUSIVE OR")-- result
is an X only where one pattern
had an X, but not both.

NAND-- reversed AND.

NOR-- reversed OR.

SUBROUTINE JUMP--
"Go to another part of the program
but r this place b you'll
be coming back on your own."

RETURN FROM SUBROUTINE--

"Go back to wherever it was in the
program that you last came from."

PUSH (on Stack machines only, see p.)=
take a binary psttern and put it on top
of the Stack.

POP (on Stack machines only, see p. y--

take whatever binary pattern is now on
the top of the Stack.

ADD ONE (or "INCREMENT")-- (Useful when

you're counting the number of times some-
thing has been done.)

SUBTRACT ONE (or "DECREMENT," not "excre-

ment")-- (Also useful when you're count-
ing the number of times something has beer
done.)

ASTRONOMICAL/INFINITESIMAL ARITHMETIC (or

"FLOATING POINT" arithmetic)-- operates
on a certain number of Significant Digits
and keeps separate track of the decimal
point-- actually a Binary Point, since it's
rarely if ever done decimally.

=»Very important in the physical
sciences.

Almost any operations can be "built in"." The

sky is of course the limit, since any elec~
tronic operation can be added to a compu-
ter's instruction-set if desired-- say, "turn
on the electric blender" or "multiply quat-
ernions"-- but the former is more easily
done as an output instruction, and the
latter as part of a program.

'I;HE ROCK BOTTOM PROGRAM FOLLOWER

How, you ask desperately, does this inner-
most program follower work? The one that is
built into the computer?

Aha,

Basically it consists of two specific regis-
ters, the Program Counter (usually abbreviated
PC) and the Instruction Register (usuelly abbre-
viated IR), and other electronic stuff, loosely
termed "decoding logic."

(S8ince we are already visualizing the
program follower as a little hand, let's think of
the index finger as the program counter and
imagine that the thumb can flip an instruction
into a little cup, the Instruction Register or IR.
What the heck.)

WHEN a program is set into operation, the
binary pattern specifying its first address in
memory is put into the program counter,

Then the instruction at that address is
fetched to the program follower (that is, put in
the instruction register), decoded and carried
out.

THEN THE PROGRAM COUNTER AUTOMAT-
ICALLY HAS ONE ADDED TO IT, SO IT POINTS
TO THE NEXT INSTRUCTION.

The instruction pulled from memory is
held in the command or instruction register
and there decoded by the system's electronics.

It is of no concern to the programmer how
this is done electronically. (And indeed elec-
tronics is generally of little concern to computer
people, unless they are trying to design or op-
timize computers or other devices themselves.
Indeed, the electronic techniques are constantly
changing.)

All we need to know is that an electrical
decoding system (called the logic circuits) carries
out the specific instruction-- for instance, by
shutting off the path to the memory, turning on
the adding circuit, and opening paths through
the adding circuit and back to the main register.

Now that the program counter holds the
number of the next instruction it in turn is
accordingly fetched and executed.

And so it continues.

When an instruction calls for a jump or
branch in the program, what happens?

The jump command causes a new number
to be stuffed into the program counter, that's
what, and so that's where the program goes next.

ALTERNATING CYCLES

Many instructions tell the program follower
to take a data word (also a binary pattern) from
memory and put it in a main register or vice
versa.

Such an instruction is translated by the
decoding logic into a request to the memory,

Since a core memory can only do one
thing during one of its cycles, the next instruc-
tion in the program cannot be fetched until the
data has moved to or from the memory.

Thus in many types of program the cycles
alternate:

Instruction cycle (fetch the next)
Data cycle

(data goes to or from memory),
Instruction cycle,

Data cycle,
and so on.
Somehow
LOADING, STORING,
MODIFYING

AND TESTING
BINARY PATTERNS
DOESN'T SEEM

TERRIBLY FRAUGHT
WITH POSSIBILITIES;
but the endless variations and ramifications
make chess look like tic-tac-toe.

And part of the power, of course, is in
the great speed, the teeny fraction of a second
each step takes; five hundred operations yet
take only about a thousandth of a second. So
no matter how intricate the enactment to which
these tiny steps are built, it still happens
awfully fast.

A computer, then, internally just consists
of certain places to work on information (main
registers), certain places to Kkeep it the rest of
the time (memories), certain pathways and inter-
connections between them, an instruction-set
having certain powers whose instructions can be
operated on out of memory, and a program fol-
lower that carries out the instructions of that
instruction-set.

INSTRUCTION-SET.

The system of command patterns
designed and wired into a particular computer,
each with its exact resuilts.

(The instructions in the set are the vocabulary
of a machine language.)

WINd-UP
CROSSLIORY PUTTUE

(Binary ¢Binary
pattern pattern selecting
We look at last at what really happens 1 where to perf
inside a given computer. It must be a specific operation) operation)

computer because there is no single inner lan-
guage for all computers. For simplicity's sake
(like most introductory texts) we hereby pre-

sent a fictitious machine,

™E
* FIDOw»

(Faithful Instrument, Domesticated and Obliging).

J /P OPCODE ADDRESS
S i 7

XXXXXoo000000
e~
don't matter

0O0X00oo0o0o0000
N~

address goes here

The FIDO is a twelve-bit machine. The .
main register (it has only one) is twelve bits
long, and every memory slot is twelve bits long.

zero.
Every instruction is twelve bits long;
every data word is twelve bits long, though of
course much longer pieces of data can be put oxxoaq w STORE

together by taking more than one twelve-bit sddress goes here
word.

Some rudimentary instructions of the FIDO
are listed in a nearby box. The instructions of
the FIDO are of two types: plain ones that just
use the main register (like CLEAR), and the
divided ones, which select 8 memory slot or
output device. On the FIDO these are divided
into an operation code (opcode) of five bits--
the bits that tell the program follower what the
operation is to be; and an address of seven
bits, specifying which memory slot (or external
device) is to be operated on.

XX000opo000000
address goes here

address goes here

These seven bits allow exactly 128 differ-
ent patterns, (from 0000000 to XXXXXXX),
which means we can select among exactly 128
different memory slots. (See Binary Patterns,
p. 330 (s

address goes here

0000Xoo000000

The Fido comes with one row of lights
and switches; the row of lights can show the
contents of any specific working register or
memory slot. When the computer is stopped,
thsis is helpful for debugging programs (see p.

o

address goes here

Ah, if only we could tell you all about the
FIDO here! Its many more instructions. The
option bits in the commands that allow fancy
variations, or the option bits in the interfaces,

B

FAS1c INSTRUCTEAS oF THE FIND CompUTER.

Fr o revelaten & 5 Secret HtCH‘)' See Befow.,

OPERATION CALLED FOR

CLEAR AC
This instruction causes the AC to be
filled with zeroes.

ADD (from memory to AC)

This adds the contents of the speci-
fied memory location to the contents of the
Result remains in the AC. Whatever
was in the memory before is still there.
This instruction is also used to bring a
new pattern to the AC, copying it from the
specified memory location; but you have to
CLEAR the AC first, so you're adding it to

AC.

This instruction copies the contents
of the AC to the specified memory location.
Whatever was in the memory location is
destroyed.

Whatever was in the AC is still there
too.

INPUT*
This instruction copies the contents
of a specified device register to the AC.

QUTPUT*
This instruction copies the contents
of the AC to a specified device register.

X0X00o0o00o0000 JUMP

This instruction makes the program
follower take its next instruction at the
specified address and go on from there.

TEST, SKIP IF EQUAL**

This is a common test instruction,
permitting the program to branch depen-
ding on various conditions. The contents
of the AC are compared with the specified
core memory location. If they are not the
same, the program continues and takes the
next instruction in the normal fashion. IF
the two patterns are the same, the pro-
gram follower SKIPS the next instruction
and goes on to the one after.

33

P AR R R R R R T e e e R S22t s]

spoken of earlier, which allow the program to Whatever the next instruction is, N
give different commends to external devices. then, determines the course of events *
if the two patterns turn out to be the
But let's get on with a program for the same. :
FIDO. Thrill to the pulsating rhythms of. .. ho
;l For instance, that middle instruc- *
U K’ . tion can be a JUMP instruction, taking M
; the program to a whole nother part of *
gee wed r43¢9 * Note: core memory and a new series of events. M
. slighty thfse instructions hav. 3
: 115 insteg O the innoens C" Changed M
H Actually rction does not et (you), =
- can't }t offers g wid, _t on the ppp_ *
» 80 into p, €r chojce ; 8 x
* Packing mayns " Sophisticateq 1 ich we H
» “"S’den'n; 'is the ppp- ed instryetioy,- M
* its smg bly eff;
B AR AR AR R R R AR AR R R RN 1 12-p ehﬁc‘e"‘f Tk r AR AR R R AR RAAY

Actually computers with small word lengths
like these are called minicomputers. Big computers
have much bigger word lengths. The IBM 360
has a 32-bit word length. The Control Data 6600
has a 60-bit word.

BINARY PATTERNS

Now, it is an interesting fact that not only
are computer memories divided up into slots, or

are what the computer operates on deep down. "Binary"
locations, of equal length,

just means that only two symbols are used (just as
"decimal" means that ten symbols are used). Patterns
of binary sy happen to be i i

50 that'd how computers are built, but that would orat
change if Some more convenient set of symbols came reenens ~
along.

&0 kil
Binery patterns are very. systematic and easy for ston Xertoen =y
to deal with. Consider the number of binary symbols
you can have in just four spaces. #LET'S USE THE
LETTERS X AND O, AND PUT THEM IN ALPHABETICAL
ORDER, S0 YOU'LL SEE THAT WE'RE TALKING ABOUT
PATTERNS, RATHER THAN NUMBERS .

0000

o Q0 X

0 0]X{0

00X X but each of these locations has an address, that
o[xjo o is, & number by which the contents of the location
olx({o X can be found. And these numbers are binary.
O[X|X O

O|X|X X Many forms of information are kept in binary
Xj0 oo patterns which are not numbers. For instance,

X|0 0 X letters of the alphabet are usually stored as 8-

X X0 bit patterns.

X|0 XX

X% o0 FRERL

XX 0 X

XjXXo THE LETTER "Q"

XX X X (IN ASCIl CODE)

You can see that the pattern repeats in certain
interesting ways. Each column repeats itself as you
read down; adding a new position to the left doubles
the number of possible patterns you can have in the
row.

All computers can
in prineiple do
the same things,
some faster.
However, some are
too slow or too small
ever to do what others can,
though the types of their
operations are similar.

These are the infamous "bits" you have heard
of. As you can see, there is nothing hard or compli-
cated about them. The number of bits in a thing
are the number of spaces which can be either X or
0.

Now, the most basic fact about any computer
is its word length: that is, the number of spaces
in a standard memory slot of that computer.

(2-L0 compier wevd

LTI 3
m!e»!.ﬁ con Eu‘fe» word

A "12-bit computer" (ke the PDP-8) has memory
words that are all twelve bits long. A "16-bit
computer” (like the PDP-11) has memory words that
are all 16 bits long.

Some computers (and their
languages and facilities)
are much more convenient
for progremmers than others,
because their instruction-sets
are better.

This is no small matter.

(But it's a big matter of
taste and argument
among computer people.)

—_— 1

The bigspoint is,
AT THE BOTTOM PROGRAMS ARE BINARY
AND DATA IS BINARY,

since it's all stored in binary memory.

But since that suits few people's individual
purposes, we build up HIGHER LANGUAGES AND
DATA STRUCTURES. So that different users
deal with different mechanics corresponding
better and more conveniently to the structures
that interest them.

However, we will have to stop using these
X's and O’s. It's not really done, so we will
switch to the more usual way of writing binary ~

patterns with 1's and zeroes. (Apologies to readers
who hate numbers; but remember that these patterns,

while we may write them out as 1's and zeroes,

may represent wholly non-numerical kinds of
information.) That means the letter Q is

but it's still the letter Q.

Of course, bits may also represent numerical
information. And so we pass on to

BINARY NUMBERS.

These are the seme old binary patterns,
but when we decide to treat them as numbers,
they are binary numbers.

Let's count. Note that these are the same
combinations of bits as before, merely put in the
more usual notation

decimal number binary number

0
1 001
2 010
3 o011
4 100
5 101
6 110
7 111
08 1000
09 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

As you observe, the higher numuers need more
and more bits to hold them.

If you want information on the machine
and 1 of any given
machine, write the manufacturer for the pro-
gramming manual, There may also be a
pocket card.

INSTRUETION [4Your

An ocecult aspect of computer design is the
matter of how to pack into the so-many bits of
an instruction word all the options the programmer
should have,

INSTRUC 00
TEECT Bity Adlress § T3

N
{ | I]
N

L(AJYk of C»’«,Il]i niTrucTion,

For no particular reason the instruction
select bits are usually on the left, the address
bits on the right, and option bits (no room for
them in this book, unfortunately) in the middle.

The number of bits in the address deter-
mines the number of places in the memory that
the programmer can choose among. 15 bits in
the address means a choice of 32,768 memory lo-
cations. 7 bits means a choice of only 128.

(See "Binary Patterns," p. 3% .)

Generally a specific computer has more than
one instruction layout.

Deciding what the instruction layouts are
to be hinges on the architectural design of the
computer (see p.32) and the instruction-set,
It all gets worked out together.

It's ultimately a matter of design elegance,
but the are very . An
elegant instruction-set is easy to use and there-
fore saves a lot of time and money. (Anyone
interested in studying the matter might want to
compare the PDP-11, a 16-bit computer with a
brilliantly designed instruction-set, with some
other 16-bit computer.)

GUESS WHAT!

The FIDO is nothing but a stripped-down
version of that beloved family pooch of computerdom,

e PHP-G.

(Described p.40 .)

If you buy a PDP-8 from Digital Equipment
Corporation, you get all this and more. (Except
for the external devices.) And the PDP-8, of
course, allows much bigger memories than 128
slots, but that's too complicated for here.) Arf.

>

This brings up some interesting facts.

CERTAIN NUMBERS ARE SPECIAL because
they are the number of things that can be specified
by & certain number of bits.

Special number

one bit a

4 two bits jwa)

8 three bits [nem

16 four bits

32 five bits E%

64 six bits [o mm ot s & wm §
128 seven bits ele.
256 eight bits
512 nine bits
1024 ten bits

("ONE K" is 1024; memories and everything
else come in K's, or multiples of 1024.)

Actually the term "k," standing for "kilo-," should
mean one thousand, and the term BK, or Binary K,

is used by fussy people to stand for the very important
nearby number 1024. But computer people generally
use expressions ending in K for the following special

numbers:
THAT'S HOW MANY
NUMBER COMBINATIONS FIT IN
2048 ("2K") eleven bits
4096 ("4K") twelve bits
8192 ("8K") thirteen bits

fourteen bits
fifteen bits.

16,384 ("16K™)
32,768 ("32K")

Above this number they increase very fast, and
we generally have to look them up, but the idea is

limitsﬁ__efn?xﬁer of things you can select among .
For instance, if you have a computer memory with
32K different locations, you need fifteen bits exactly
to specify a location in memory .

Here are some ramifications:

« The word length of a computer determines
how large a number it can hold. A computer with
a twelve-bit word can only hold a number up to
4095 ir. one memory location (since we use 000 000
000 000, the first combination, to stand for zero);
if we want to use longer numbers we have to set
aside two or more word locations per number. (A
16-bit computer can held a number up to 65,535 in
one memory location.)

e In designing data structures, if you use
binary codes (rather than, say, alphabetical characters),
you have to allow encugh bits for all the alternatives
that might turn up.

» In the design of the wired-in instructions
for a computer, therefore, the number of bits set
aside to specify an address in core determines whether
that instruction can select from the whole memory,
or just a part of it.

34

COUNTING CLock
bevee @ PR ER)
{

|} EQUIPMENT SETUP FOR THIS PROGRAM. s &T?_Y»\-\\ o L'm“) ["kﬁﬂ
*B0CKPS WRISTWATCH % ok
device DEVICC DEVICE BEVICE
N R Tes, . 3 1
There is a certain folk hero whom the "“ REHTER o0 RECUMULATON, 0 AC Y 20
people all call Bucky. It is said that he wears) \ e
three wristwatches: one for where he is now, ! |
one for where he will be next, and one that -
tells what time it is at his home. bevreg »E\gx nc(:/)‘ce gclvgt
Well now. Here's an example of a little
i 3
problem on which to try our FIDO computer. eon :
wievface
Let's wire up a magic wristwatch for veyustes pevice evice BEVICE BEVICE
Bucky the Folk Hero, one that will use a teeny of “d‘) 12 l], iO Cr
FIDO on a chip (the coming thing), attached to N
three rows of numerical readouts (tike those O @ . O Q ME
on pocket calculators). o\~ .
TEN-HR. TENAN. MU
: o 1 U
This application is not so absurd as you METS JJ;’;; DATS et

might think.
It is obviously quite simple in principle.
It will let us see some of the ways that

the rock-bottom machine languages of computers
are used.

0T THIS (YoNnERFUL
W e

Anyhow, what the program is really doing,
when it finds the timer has reached zero, is,
testing whether the rightmost digit is a nine.

(It only has to test one, since minutes are the
same round the world.) If it's not nine, it
just adds one to each-- a part of the program
called ADMIN, starting at XXO OXO. If it's
nine, however, it sets the final digits all to

Note that in this flowchart

A«J

means, “"stuff the number 3

. into the variable A." A

Naturally this got saved for last, and
what is presented here shows it.

variable is a named location
in core memory.

zero, and then tests the tens digit to see if it's
a five, meaning the end of an hour. (The num-
ber five has been ingenuously stored in a loca-

tion which Mike has called FIVE, which assem-
bled to slot number X OXO O0XO. If you look
there, you will see that the slot does, indeed,
contain the binary pattern for the number 5.)

The example was meant to be a case of
not-very-numerical programming that would
show the abstractness of it all. The program
itself has no intrinsic quality related to the
problem; that much should be visible. What a pity there is no time to take you on
a guided tour of this profound, magnificent pro-
gram. If you dig this sort of thing, however,
you might just be able to dope it out.

Anyhow, 1 programmed this myself a few
weeks ago in the FIDO language, and was very
pleased with it, but then discovered a couple i
of appalling bugs. As time closed in on this |
project 1 asked my friend Mike O'Brien to code !
the program, and he kindly consented, taking |
time out of his previous weekend plans. Here
is Mike's program, for which I am grateful.

Hope you

Anyway, you've had your taste.
want more.

LAJT LJ"S‘S
o) Tl
e Tle sawe:
cheek fhe

Lsp wileq

HowEVer, after it was set in type, Mike i
realized that it too has some gross flaws and
would not work as here presented. We thought
of having a chocolate chip cookie contest for i
corrections, sending out chocolate chip cookies '
to entrants fixing it up, but we don't have ;
such a computer and we wouldn't run Fpro-
gram if we had one anyway, so see if you can
get the basic.idea of it, and if you are a real
wise guy fix the program for your own satis- i
faction, and that will be that.

A +
we've of

The basic idea is that we have a FIDO,
presumably on a single integrated circuit chip, i
attached to thirteen external devices (or periph-
erals, or input-output devices, or I/O devices
or whatever). These devices are a timer or b
clock, which reaches zero once per minute--
this is a computer clock, meaning a timer, not !
something that people can read-- and the three
rows of numerical readouts that are the desired

1 AP 1 o
DEvIcE §
ASS 1 To
device §

Superwatch. .
For simplicity's sake we assume here that ‘
each numeral is interfaced to do either input or i Adp 1 o
output; thus the FIDO computer can ask any | Devies 2, e
- given numeral what it says, and change its con- v rs
tents. ASY 3 10) led
runties
A device ¢ the program.
The finished Wristwatch is going to give .
time on a twentyfour-hour basis, not twelve, like L(ADD 4 to
at NASA and suchlike places. After 12: 59 comes Device fo -
13: 00. After 23:59 comes 01:00. A
|
L | i
200 , !
afte, Shoy,,
a li: 24:59 " Comg on |
¥e ¢g tle Shop, ThE g, clg, ‘ ;
3 ranSt tng Xt o, s by 0%k
er ec Uck b, !
caly thy ong . XY, o;
it oo9ay g." a g, o g tce !
3, £y * i 'z
Tatpe,s °“91$ o, hig ;0¥ a ' |
("'e‘*mn thap Ut ln'c aning i Bt i
Caryy, 19 the " "Cody, Orreg, | -
begy Y, Out 4, ep:togramgt_e.rrok,' 1y, | e \NH\U-‘ HOU&
. h s g LS g LOOF bevice™ R
N
Some 0¥ beg; (rif?.&fs My bevice N <
the, 20 seq, “ Thee : ~ Neso - hoor
*heh gy, Tmes) N e e checks are
........ pev fovme *
The bulk of the program is occupied with o~ al| 5§
testing the numerals and changing them. How- i WATCL\&; L-]
ever, in proportions of activity, the poor thing P iHmnEmmnminn \ the same
is going to spend most of its time saying, "ls . iiGiniinnaasn bevice l
it time yet? Is it time yet? Is it time yet?" N+l deviee cop.-
(That's the second, third and fourth instruction.) “QN?‘;L"T =21 N« 1 — 7F -
: ves] fom L
Because the FIDO selects the particular Tty Nete ﬂ“‘JF
input-output device with the last seven bits of s ’00\0, N s e womber
an input or output instruction, this has been : N=5 Say dboely
done with "address modification" arithmetic: : be couse devite we've
creating an output instruction to address a par- ! Thot's what we Yook ing a1
ticular device by adding the instruction to the ! et T " \
name of the device. This is an ancient and 24 haurs s Jevice N
honorable programming trick. ts s achsl
soutents.
In several cases, the program chooses a
device to examine, or fill, by taking a blank (N"TQ Tt
input or output instruction (kept at locations : i : fhe varialle
X OXO XOX and X 0XO XXO, respectively) and H SRR : Hi called
adds it, in the AC, to a counting number that / : N lives o,
is being used to step around in the array of <3 s : i c*re focation
numerals. (This counting number is "N," YOXoxxy —_

stored in location X OXO XXX.) (These instruc-
tions were put into the slots in octal form, as
"6p8AB" and "620PB" respectively. The slashes
are meant to distinguish zeroes from Ohs. The
"B" at the end (in the assembly listing) means
that the ler is supp 1 to tr 1 these
numbers to Binary, taking them three bits at a
time: 6 p B P comes out to XXO 000 000 000.)

FeR mext pe e)

This is what the program looks like in the
computer's core memory. (A printout
like the following is called a machine-
language listing.) i

Since all the addresses are filled in, this
program is said to be in absolute
binary. If they weren't filled in, it
would be called relocatable binary.

Meachine-language listings come in different
flavors. A binary listing (or dump)
is generally in ones and zeroes. An
octal listing groups the bits by threes
and substitutes the numbers zero
through seven for the different com-
binations of three bits. The other
main kind, the hexadecimal listing
or dump (an IBM thing), groups the
bits by fours and substitutes the num-
bers 0-9 and the letters A to F, for

the sixteen different combinations of

four bits.

s Wrdtastel
- w BINNCY

This is what the program looks like when
you set it up for the Assembler,
which is the easier way.

. A program laid out like this is called an

Assembly Listing. Studying it may
help you debug (see p. I0).

An easy-to-remember alphabetical code is
used to represent each final instruc-
tion desired. Such an abbreviation
is called a mnemonic; usually they're
more cryptic. The mnemonics are
turned by the assembler into the
binary opcode.

You don't have to know the actual addresses
in core memory, you just use alpha-
betical names or labels, and the As-
sembler figures out where they really
go and puts in the binary addresses.

Desired numbers, such as 9, are plugged
into the address parts of instructions.

YOUR OWN COMMENTS (here set off with
slashes) can stay here too.

In this FIDO example, the Assembler foilows
two common practices: it recognizes
a label because it ends in a comma,
and recogni a b it

begins with a slash.

Bucky s Wriifwsfel o
ASs

SLY ANGUAGE

oNTE
Abbles . LABELS . 1
ks (Tl yerTable tomars Phlmes Proceamyeics Commenys
<ore wewory e fhown ren Nomencd) fﬂm (Mﬁcuwmo,y 5o be doesc'f forgel, or flo werfroy cantef.
CORE MEMORY
000 XXXXX0000000 START, CLEAR
00X XX0000000000 CHKCL, INPUT p /CLOCK IS 1/0 SLOT #000!
0X0 O000XXO0XXO0X TEST ZERO /A NEW MINI/JTE? #0000000.
OXX X0X00000000X JUMP CHKCL /NO, CHECK CLOCK AGAIN.
igg gggoogggﬁggg; INPUT 1 /YES, READ MINUTE SLOT OF I1ST WATCH.
TEST NINE /IS IT A 92
XXO XOXO00XXO00XO JUMP ADMIN /NO, GO TO MINUTE INCREMENTER
XXX XXXXX0000000 CLEAR /YES, SET EACH
00X 000 XX00X000000X OUTPUT 1 /TEN-MINUTE DIGIT
00X 00X XX0OXO000X00 OUTPUT 4 /TO ZERO.
00X O0XO0 XXO0X000X00X OUTPUT 9
00X OXX XX00000000X0 INPUT 2 /CHECK TEN-MINUTE DIGIT.
00X X00 0OOOXXOX00XO0 TEST FIVE /NEW HOUR?
00X XOX XOXOOOXXOXXX JUMP AD2TEN /NO, GO TO TEN-MINUTE INCREMENTER.
00X XXO XXXXX0000000 CLEAR /YES, SET EACH
00X XXX XXOO0X0O000X0 OUTPUT 2 /TEN-MINUTE DIGIT
0X0 000 XXOOXOO00XX0 OUTPUT & /TO ZERO.
O0XO 00X XXOOXO00X0XO0 OUTPUT 10
OX0O 0XO OOXOOXOXOXXX ROUND, ADD N /GET CLOCK-NUMBER COUNTER
0X0 OXX OOXOOXOXOXOX ADD INPUT /AND FORM INPUT INSTRUCTION
0X0O X00 OXXOO00X0000X STORE IN1 /PUT IT WHERE IT BELONGS.
0X0 XOX OOXOOXOOXXXO ADD ONE /FORM OTHER INPUT INSTRUCTION.
0X0 XXO 0XX000X00XXX STORE IN2 /PUT IT WHERE IT BELONGS.
OX0 XXX OXXO00XXXXX0 STORE IN2P1 /HERE TOO.
OXX 000 XXXXX0000000 CLEAR
0XX 00X OOXOOXOXOXXX ADD N JGET COUNTER AGAIN.
OXX OXO0 OOXOOXOXOXX0 ADD QUTPUT /AND FORM OUTPUT INSTRUCTION.
OXX OXX OXXOODXOXXOX STORE OUT1 /PUT IT HERE WHERE IT BELONGS.
OXX X00 OXXOOOXX0000 STORE OUTIP1 /AND HERE.
OXX XoX OXXO00XXXX0X STORE OUT1P2 /HERE TOO.
OXX XXO OOXOOXOOXXX0 ADD ONE /FORM OTHER OUTPUT INSTRUCTION.
OXX XXX OXXOOOXOXOXX STORE OUT2 /PUT IT WHERE IT BELONGS.
X00 000 0XX00X000000 STORE OUT2P1 /HERE TOO.
X00 00X 000000000000 IN1,p /BECOMES "INPUT N"
X00 OXO OOOOXXOXOOXX TEST NINE /IS HOUR DIGIT A 97
X00 OXX XOXOOOX00XO0X JUMP PAST /NO, TEST AGAIN
X00 X00 XOXO0OXXXX00 JUMP ADLOHR /YES, GO FLIP 10-HOUR DIGIT
X00 XOX 0000XX0X0000 PAST, TEST THREE /1S HOUR DIGIT A 3?
X00 XXO XOXOOOXOXXXX JUMP INCHR /NO, GO INCREMENT HOUR.
X00 XXX 000000000000 IN2,p /BECOMES "INPUT N+1."
X0X 000 000OXXOOXXXX TEST TWO /1S TEN-HOUR COUNTER A TWO?
X0X 00X XOXOOOXOXXXX JUMP INCHR /NO, INCREMENT HOUR NORMALLY
X0X QX0 XXXXX0000000 CLEAR JYES, IT WAS 23:59, SO SET
XOX OXX 000000000000 ouTZ, 9 /TIME TO $1:88. "OUTPUT N+1" IS HERE.
X0X X00 OOXOOXOOXXXO ADD ONE /SET AC TO 1.
XOX XOX 000000000000 OUTL.p /AND "OUTPUT N" HERE.
X0X XXO XOXO00X00000X JUMP INCN /GO INCREMENT CLOCK-NUMBER COUNTER
XOX XXX OOXOOXOOXXXO INCHR, ADD ONE /ADD 1 TO HOUR
XX0 000 000000000000 OUT1P1,8 /BECOMES "OUTPUT N".
XX0O 00X XOX00X00000X JUMP INCN /GO INCREMENT CLOCK-NUMBER COUNTER
XXO OXO OOXOOXOOXXXO ADMIN, ADD ONE /ADD 1 TO MINUTE DIGIT.
XXO OXX XX00X000000X OUTPUT 1 /AND PUT IT
XX0O X0O0 XXOOXO000XO0X OUTPUT 5 /IN ALL
XXO XOX XXOOX000X00X OUTPUT 9 JTHE MINUTE DIGITS.
XXO XXO XOX00000000X JUMP CHKCL /THEN GO BACK TO CLOCK-WATCHING.
XXO XXX O0XODOOOXXXO0 ADZTEN, ADD ONE /ADD 1 TO TEN-MINUTE DIGIT
XXX 000 XXOOX00000X0 OUTPUT 2 /AND PUT IT
XXX 00X XXOOX0000XXO0 OUTPUT & /IN ALL
XXX OXO XXOOXOOOXOXO0 OUTPUT 1 /THE TEN-MINUTE DIGITS.
XXX OXX X0X00000000X JUMP CHKCL /THEN GO BACK TO CLOCK-WATCHING.
XXX X00 XXXXX0000000 ADIPHR, CLEAR /FIRST CLEAR
XXX XOX 000000000000 OUT1P2, P JHOUR DIGIT (BECOMES "OUTPUT N")
XXX XXO 000000000000 IN2PY, 8 JTHEN GET TEN-HOUR DIGIT
XXX XXX OOXOOXOOXXXO0 ADD ONE /AND ADD 1 TO IT.
X 000 000 000000000000 OUT2P1,8 /BECOMES "OUTPUT N+1".
X 000 00X XXXXX0000000 INCN, CLEAR /ROUTINE TO GET NEXT CLOCK NUMBER.
X 000 OXO OOXOOXOXOXXX ADD N /ADDING FOUR TO CLOCK NUMBER
X 000 OXX 0OX00XOX000X ADD FOUR /TAKES US TO NEXT CLOCK.
X 000 X00 OOOOXXOX0X00 TEST FTEEN JHAVE WE RUN OUT OF CLOCKS (N=15)?
X 000 ~ XOX XOXOOXOOXOXX JUMP STORN /NO, GO STORE N AND RETURN
X 000 XXO XXXXX00000CO CLEAR /YES, SET
X 000 XXX OOXOOXOXOXXX ADD N /N=3
X 00X 000 00X00X0X0000 ADD THREE /AND RETURN
X 00X 00X OXXOOXOXOXXX STORE N /TO START OF PROGRAM
X 00X OXO XOXOO000000X JUMP CHKCL /(WE'VE DONE CHECKING CLOCKS).
X 00X OXX OXXOOXOXOXXX STORN, STORE N /STORE NEW CLOCK-NUMBER COUNTER
X 00X XO0O0 XOXO000X00X0 JUMP ROUND /AND SERVICE NEXT CLOCK. END OF MAIN PROGRAM.
X 00X ' XOX 000000000000 ZERO, 8 / THESE ARE CONSTANTS.
X 00X XXO 00000000000X * ONE, 1
X 00X XXX 0000000000X0 TWO, 2
X OX0 000 0000000000XX THREE, 3
X OXO 00X 000000000X00 FOUR, 4
X 0OXO OXO 000000000X0X FIVE, §
X OXO OXX 00000000XO0X0 NINE, 9
X OXO X000 0000DOOOXXXX FTEEN, 15
X OXO XOX XX0000000000 INPUT, 6988B /RAW INPUT INSTRUCTION. (OCTAL)
X OXO XXO XX00X0000000 OUTPUT, 628#B /RAW OUTPUT INSTRUCTION. (OCTAL)
X OXO XXX 000000000000 N, # /COUNTER FOR WHICH CLOCK WE'RE ON.

\F THIS [90KS
FORMIDABLE,

=y Lt

TRY OVER HERE,

35

“THIS COPPER MAN IS NOT ALIVE AT ALL"

Tsk God b

THE ASSONBLR_

Ten minutes after starting to program in
Machine Language you will probably want Assem-
bly Language.

It's a pain trying to get all the ones and
zeroes right. (Exes asd Ohs w the exu\t\e. Sawe 1(..-.'3,)

It's a pain trying to keep track of binary
numbers for where things are stored.

SO: let's give them alphabetical names.
That's assembly language. (And the conversion
program we put our alphabeticals into, to turn
them back into the binary patterns that really
run the machine-- that conversion program is
called the Assembler.)

An assembler is a direct and non-tricky
translator, intended mainly to handle the details
of exact transposition between instruction code-
words and the exactly corresponding machine-
language program that you intend.

IT WORKS LIKE THIS: The assembler
scans through the assembly-language program,
testing the successive alphabetical characters.
After finding the key punctuation marks or
delimiters (shown as comma and slash for the
FIDO assembler), it scans for the alphabetical
instruction mnemonics, and translates them by
a table in core memory into the corresponding
binary codes. (It ignores everything on a line
after a slash 4 which is lucky, since in the
comments you may use words which are the same
as instruction mnemonics.)

The assembler also counts the instructions,
and (starting wherever you say) figures where
in core memory the instructions (and any data
or spaces you put in) go. Then it makes a list
of these addresses, called a symbol table (also
called & name list at less elegant places).

An assembler is the simplest form of
compiler (see p.30). Basically it translates an
assembly-language program, which cannot be run
directly, into a binary program which can.

Then from this symbol table it fills the
resulting binary addresses into the binary com-
mands of the program.

Aren't you glad you don't have to?

Generally the assembler then sends out
the binary program to some external device,
such as a disk memory or paper tape punch.
Then it can be put into core memory when you
want to run it.

(You can put & program into core memory
one bit at a time through the front-panel switches;
but nobody likes doing this except for teeny pro-
grams.)

(Note: an bler for one P (say
the PDP-8) that runs on a different computer
(say, the 360) is called a cross assembler.)

OW ‘You SKE
WHY WE USE
H1GHE R CoMPUTER LANGUAGES.

M paoyle ot ke fhs sofF

"Assembly language programming is good for the soul."

Folk saying

SUOTIONPOId ASUSTA ITEM (D

This is a PDP-11, one of the world's best-designed minicomputers (see p. 41.).
The PDP-11 is a 16-bit machine. Shown is Model 45, the fastest PDP-11, which
has various special features. Stripped, with 4K of core memory (that's 4096
locations), it costs about $13 grand. A smaller PDP-11 goes for some $5000.

A minicomputer simply means a
small computer, no different in
principle from the big ones (see
next spread), and it can do all the
same things except as limited by
speed and memory capacity.

(Mind, we are talking about
real computers, not the little cal-
culators you hold in your hand that
just do arithmetic. A real compu-
ter is one which works on stored
programs and all kinds of data,
working not merely on numbers but
on such other things as text, mu-
sic and pictures if supplied with
appropriate programs; see flip side.)

There is some argument over
what constitutes a minicomputer;
basically we will say it's any com-
puter with a word length of.18 bits
or less (see '"Binary Patterns," p.
27). (Some companies, like Data-
craft and Interdata, are trying to
peddle their worthy computers as
"minicomputers" even though they're
24 and 32 bits, respectively, but
that's very odd. Interdata says
any computer under ten thousand is
a mini-- which means all computers
will be minis by and by; a vexing
thing to do to the term.)

Traditionally minicomputers
come with much less., In the old
days pretty much all the programs
you got with it were an assembler
(see p. 35) and a debugger (see p.
Jo) and a Fortran compiler (see p.
J31) if you were lucky. Today,
though, with minis having highly
built-up software like (see pp.%0-42
for descriptions) the PDP-8, the
PDP-11 and the Nova, you can get a
lot of different assemblers, to-
gether with Fortran, BASIC, and a
little disk or cassette operating
system (see p. 45) to make your
life a little easier.

The idea of owning a computer
may' seem strange to some people,
but with prices falling as they are
it makes perfect sense. Numerous
individuals own minis, and as the
price continues to drop the number
will shoot up. For several families
with children to pool together and
buy one for the kids makes a lot of
sense. One friend of mine has an 8,
another is contemplating an 11.
(I've been trying to get my own for
years; perhaps this book...) Any-
how, the general price range is now
$3000 to %6000 plus accessories,
and that's dropping fast. Rental
is usually a great mistake: prices
are very high and after six months
or so you'll have paid for it with-
out owning it. (But names of rental
places will be found in this book,
and some of them may offer good ar-
rangements.) Minis may now be had
in quantity for $1000 each-- price
of the PDP-8A in May 1974-- and soon
that will be the consumer price.

Unfortunately, the price of the
computer itself is dropping faster
than that of the accessories, such
as the basic terminal you'll need,
which still weighs in at $1000-5000.
Moreover, as soon as you want to do
anything serious you'll need a disk
(starting around $4500) or at least
a cassette memory (starting around
$1500). But these prices too will
come way down as the consumer market
opens.,

Some of us minicomputer freaks

see little real need for big computers.

Minicomputers are splendid for inter-
active and '"good-guy" systems (see

p. 13); as personal machines, to han-
dle typing and bookkeeping; even for
business systems, if you recognize
the value of working out your own in
BASIC or, say, TRAC Language.

Minicomputers are being put in-
side all manner of other equipment
to handle complex control. (However,
for repetitive simple tasks, the lat-
est thing is microprocessors (see p.
“4%4), which cost less but are harder
to program.)

Minicomputers are now being found
in highschools; active marketing to
highschools is now being done by both
DEC and Hewlett-Packard.

Children's museums in Brooklyn
and Boston have recently obtained PDP-
11s for the kids to interact with. In
the Brooklyn case, the computer will
even demonstrate the exhibit and help
the child discover things about it, in
ways worked out by Gordon Pask (see p.

I .

In the future, networks of minis
may be the systems to offer low-cost
information services to the home (for
speculations, see p. DM 57).

But minis will alsg start to make big-
ger and bigger incursions on the terri-
tory of the big machines. For instance,
one group proposes a time-sharing sys-
tem which will simply consist of Novas
interconnected in a ring, the so-called
STAR-RING, which will supposedly com-
pete with big time-sharing.

Here's that selfsame PDP-11
in its overall setting. With
peripherals shown, plus the
magnificent Vector General
display (shown later on in
book, pA™31 & elsewhere),
this setup cost well over a
hundred grand. (This is the
Circle Graphies Habitat, oth-
erwise known as the Chemistry
Department Computer, U. Illi-
nots at Chicago Circle. Why
do chemists need such things?
See p. pm31.)

pat S w
3 PG

The good ol' PDP-8, perhaps
the most popular minicomputer
(12 bits). Full PDP-8s now
cost about $3000, "kits" less.
Shown here with a Sykes cas-
sette tape deck-- a nice,
rather reliable unit-- and a
screen display (see ppP22-3).
Courtesy Princeton University

& R.E.S.I.5.T.0.R.S. (see p.¥))

Kids love computers.
They belong together.
This lad flips panel
switches on a Nova,
perhaps the third most
popular mini after the
8 and 11 (16 bits; see

p- ﬁ]).

— i |

DINK‘€5= n overview

There is great confusion as between
various types of small computer, with the

latest stupid term,
ing to the confusion.

"microcomputer,” add-
We have:

minicomputer or mini

Traditionally, any computer hav-
ing an architecture (memory and
main registers) of 18 bits or
less. Lately, unfortunately,
some people have been adver-
tising their 24-bit and even
32-bit computers as minis. This
is just confusing.

(They base this on the fact
that "minicomputer" has also re-
ferred to a machine sold without
a lot of programs. But that's
really a separate issue.)

microprocessor

Two-level computer (see p.‘fﬂ).

microcomputer

midi

Crummy term apparently being used
to mean any tiny computer, regard-
less of its structure. Thus all
computers will be "microcomputers"
in a few years. This clarifies
nothing as to their structure or
use.

computer

Remember midi skirts? Well, this
term has been used for computers
larger than 16 bits or faster than
usual, by people seeking to give
the impression that their machines

are bigger than minis and less than
Even the PDP-10 (a genuwine

biggies.
biggie) has sometimes been called
a midi.

MEIN REGISTERS o GENERAL BEGITERS of

|)

4 st resorf
whew flere 'y
wotbing ysefu)

b Hh mewonry,:

CoRE MEMORY, slo called f«s] Mmow or MAN MEMoRY

of fham are wmade

ROGRAM o(» H\’IL mm donﬂs colfed "eoves M
PROGRAN
L ."« dara
” -
&
. “
PROGEA

dary
~——

—_—

"ALLLMU LA TOR

Adcessories which inforsct wit vsers are

Vwre usvally stvek
w- » Moﬂ 33MKR
"‘H>ﬁ (fu L 1),

écme

LINE-DRAWING COMPMTER DISPLAY)

(:22”' Dm 20

or

CC;S:_\

CD»& Mo 0%7

\‘ow-

?Erhecﬂﬂsﬁyrjekues; ")

A—————
BRsIC DeSIGN oF smPLE compuree

MlNlCOMMte

ey cobpv r: are
f‘e Saime b mors 5o,

A product called Cling Free

~- comes scented in a spray can,
for preventing static in your
laundry-- is said to eliminate
static electricity in carpeted
computer rooms. Spray it all
over the rug, especially near
the computer, and you won't
zapp the computer with sparks
from your fingers.

NHERE Yo CSET 'EM

al|owmg fast dences

83 Sejadah th and ol of
dove M2 or

wch-‘ouT‘ u\}evf Vi wITL\
whalever roJ Je g

yuk\«'vt) ~1‘ aJ‘VQ‘* IMSfV\T.

or o5 oé;ﬂ:f erhe\nl;

HEY, SOME MINI RENTALS MAY BE REASONABLE
Nova minicomputers are leasable from:
Rental Electronics, Inc.
(a subsidiary of Pepsico)
99 Hartwell Ave.
Lexington, MA 02173

for as little as $250/mo., long-term.

A long but incomplete list of minicomputer manufacturers is at the bottom of p. '7’§

TYHe FUN OF DERBUGEING- ON A M) L l"»‘T qouv osval —‘_P—\Gj“ﬂ@(.vu;\ pryer '\2\,0(veador ach FukcA A(fv T bombs:

ongle 1 Tia
ot lesds

~
(2

The mini man is like a rock climber,
chimneying and twisting to squeeze through

now VS Ta Loo?ﬂu
p@va\‘ﬁ wh 1

hl“it\; l do
eavdy (adov pUoyYam. o
3 Py

to his goal-- not his body, of course, but g

his program.

15 (3re)

how use leds Lo P e
regdar loaker progpon s borg o ey mfts“ Nepers
Fo load 4& l’""\"‘ :tl:,\ Tself, OD
- Debogs™
lr OJ(M

_#HT
Pow
stey @ Peosst
Ttwo asau_

vn& u«rT'u:X .y

o
or seclioyn ‘ (4
at s 1’,-“‘, v <ol
) (—\Avﬂ. oot
B

what” mstroSt o\C .

= gvroy.

Operator's console of
this particular setup.
The operator may use the
keyboard or light~pen
(see p. DM 2Z) to select
among waiting programs,
submitted by various
programmers and depart-
ments.

© WYy .

The parts of a computer are set
up to be gotten at, to be refilled and
repaired.” Thelr innards swing open
like refrigerators. Similarly, the
wiring of computers is in separate sec-
tions or modules ("module" merely be-
ing today's stylish term for "unit"),
having very orderly connections among
them. Individual circuits are on cir-
cuit sheets or"cards'" which plug in
sideways and may be replaced easily.
There's nothing really computerish
about this, it's merely sensible con-
struction; but it is traditional in
other fields to build something as a
tangle of wires, (When TV makers fol-
low these rational practices, they
call it "space age construction.'")

The operator muses at the console of the main computer at the University

of Illinois at Chicago Circle. It is an IBM 370 model 158, which rents for Why are the different parts so
about $50,000 a month, including all accessories and a dozen or so terminals far apart? So there's room to Swing
-- in the parlance of big-computer people, a "medium-sized installation." them open, refill or change them, sit

down and repair them. Refrigerators
could, and perhaps should, also be
built in separate sections, but it's
not traditional. Automobiles can't
be spread out because they have to en-
dure the jostles of the road. But
computers like this baby aren't going
anywhere.

This is a big computer. Also intimidating is the fact

that you have to ste up as you enter
a computer room. at's because com-
puter rooms ordinarily have raised
floors, permitting cables to be run
around among the pieces of equipment
without your tripping.

In principle it's no different from a small one; but it has
bigger memories, more registers, more program followers. There
are more specialized parts.and more things happening at once.
(Thus the term "digital computer complex'" is sometimes used for
a big computer.) It comes supplied with a monitor program or
operating system (see p. {45§) and a variety of other utility pro-

grams and language processors. Computer rooms are generally lit

by millions of fluorescent bulbs,
making them garishly bright. This is
simply tradition.

Biggies have many ominous and seemingly incomprehensible
things to scare the layman,

For one thin where is the computer? All you see is a lot
g, P Yy

of roaring cabinets.” Which is 1t7 Big computers can have millions
- of words of core memory. Moreover,
Answer: all of them. "The computer" is divided among the there are usually several disk drives
different cabinets (note diagram and cluster of pictures locating and tape drives, as seen in the pic-
the operator among them, below). The external devices or peri- tures, used to hold data and programs.
pherals (see p. §7) are usually in separate housings. Usually (Some of the programs are the system
there is one single box or "mainframe' containing core memory, programs, especially the language pro-
main registers, program-following circuitry, etc., as in the ma- cessors and the operating system--
chine illustrated, but these things don't have to be in one box, see p. '5-- but other programs and
and sometimes aren't. , - most of the data belong to the users.)

wary Cou‘ru"ey}
dore . l\tu«ow’

AN OPERATOR IS NOT A PROGRAMMER

Cindy Woelfer is the day-shift operator of Circle's big computer.
The job mainly consists of changing disks and tapes, starting and stop-
ping different jobs listed on the scope, and restarting the computer
when the system crashes (gratuitously ceases operation).

Ms. Woelfer, a thoughtful person, says she does not find her job
very stimulating. She can program, but the job doesn't involve pro-
gramming. - It's also a lonely job. Non-systems people, except Mayor
Daley, aren't ordinarily allowed around. BAbout the only people to.talk
to are the systems programmers who stop through to look at the scope
and see whether their programs are up next.

IN REGisTE
M ‘inv\uk;‘ f.r(%rw

g ’h’ lsé "\ﬁr'ﬁ‘«*lj ok Mad'-ﬂ
Progra~ Followes.

suINK'f“ LiGHT,
3

SHOW pary” e steRy
'N"lﬂnh FotLoweRs.

CORE MEMORY

PROGRAM, RONNING

AT THIS INSTANT PROGKAN WHOSE

TURN 1T 5’1

R wackne hiving
owa progre @4“"“” e o

w)h’-:wunov, Thinled hew o

%ﬂgut‘x
_ (FErE
2 e U, ov dedral Procaseeg Uit oureome | =
ot o e flloe? Cr ey (T o

b fie e 4w pcfors Sl

oneakem !
+ oy Tig rvojiht- ouT e

|
mbopmation !
¢ ot of tore !

il dermphin

Tt b preginl ‘

]
N 1T0 or ’_KEdUT\\IG or
Mo ogeur:uc— SYSTEM !

T or SUPERVISOR: .
T a2 Istop spae i core |
15l oy L‘l Yvoéva—h-\s
shicl, slaplld il Yoy [
=) oy (see g [y

’ ‘ \TA CHANNELS eve pre
L PSRN

sk a5 17 Gudvel Dals 6600
winicompder relf, capalle w
clabomaTion win Tt wam

Pata chanmels Yo wothave

T;:g(
y desle rves ""S'::)""»

Flhiag” mfo
3
(ezy. 3

ane)

OUTSIDE
WL g

Professor

ar
fevim m}
n aen howe. Copler.

ANOTHER st zf PN iijt(éjfj,w\ o

workimg v Seco

) scsm—— %fﬁrﬁ

ANOTHER CorE MEMORY

horE P rocRAM S
whose

Tory !
it 1su't
bot
So0 L
wil|

be .

CoRRET
PROGRAW

Weom e
{er 0¥ LOING)
35T

BAYA Chuge,
Pk e

wany et hpes
Shavin,
\/ Rt frmas

]

swiable \vag) wlese won fonction
of doe mewovy- 5
o bifa chowel s a2 (v]LF‘QA\YJ
rincple of *ams 3 o were X

O 5okt (0m po)

APy tommx»& IMS'”&’ 45 Tl jmatn cnwrdw.

aer chanse|

oATA

devie reenwie

- it f»g'ﬁa?

® o o e it
o 53 eEr

COMMON! CATTON nERINTER,
CONTROLLE @ ot eully.

A progroune)

7

Noverous
Fimg ~ sk\vw)

vvT

Tw 51v&a

local .“, such ag:

To Be More specifie,

descriptions of some prominent big computers
will be found on the next four pages.

|

OUTSIE
()
W /@/f\

h-sL Jaw
Copacdy Tama

(CONCENTRAVOR

et quoftur ::’ﬁ"“‘d
devi, wodl TR b
st sdove, wheek sl Ea
Yo lls wergeh wfo one
commpurcsron I te save
on yhowe Udls Léfwens cifues.
STES LN S, BRrreKs mme,

T
D!
Z

> ngalr
“\m/)L ;v.wvf'h.’,
yu? lw{ seeret
ovieT cqurpeal fres,
shonge L\sjnohu...

39

It used to be traditional for
machines like this to have many many
rows of blinking lights, showing what
was in all the main registers at any
fraction of a second. But there's
really no point in seeing all that,
since about all you can tell from it
is whether the computer is going or
not (if it's not, the lights are stop-
ped) and other high-level impressions.
For that reason some big computers,
beginning with the CDC 6600, started
doing away with the fancy lights and
bringing written messages to the op-
erator on a CRT scope instead (for
lots more on the glories of CRTs,
see the flip side, pp. DM 277,

Big computers can have multiple
program followers and sets of regis-
ters (a program follower and its
main registers are together called a
CPU, Central Processing Unit)., A
computer with two CPUs, ie.,, two
sets of program followers and regis-
ters to carry the progra@;Gut, is
called a dual processor; "a computer
with more than two CPUs is called a
multi-processor.

Separate independent sections of
core memory may be put in one computer,
allowing separate program followers
and data channels to work at the same
time. (Note: a "bank" of core memory
is an independent section. Except in
this sense of "core memory bank' or
"core bank," there is no other correct
usage of the layman's vague term
"memory bank.'" Computer people only
say '"memories," and distinguish fur-
ther among core, disk, tape, etc.

Note that 'data banks" are a separate
issue-- see '"Issues," p.5g .)

DINOSAURS?

Many computer people, the author
included, entertain certain doubts a-
bout the long-term usefulness of dbig
computers, since minicomputers are
cheaper, especially in the long run,
and can actually be in the offices and
homes where people create and use the
information., Big computers are neces-
sary for time-sharing (see p.YS5) and
huge "number-crunching' jobs (see
"“"Grosch's Law," nearby). However, it
will soon be cheaper to put standard-
ized number-crunching jobs in stand-
alone or accessory hardware; see "Mi-
croprocessors,” p. 4Y.

Fans of big computers also argue
that they are necessary for business
programming, but that only means tra-
ditional business programming-- non-
interactive and batch-oriented. For
tomorrow's friendly and clear business
systems, networks of minis may be pref-
erable. But makers of big computers
may be unwilling to admit this possi-
bility.

SYSTEM
CRASH

Tends to happen several times a day.

GROSCH'S LAW

Minicomputers are so nifty that we may ask
why have big computers at all. The answer is
that there are considerable economies, especially
in applications that require many repetitive oper-
ations and don't need interaction with users.

A hypothesis about the economy of big
computers was formulated a long time ago by
Herbert J.R. Grosch, onetime director of IBM's
Watson Lab and now a heavy detractor of IBM.

Thus it is called Grosch's Law. The idea is
basically that there is a square-law relationship
between a machine's size and its power (narrowly
defined in terms of the cost of millions of operations,
and without considering the advantages of interactive
systems or other features which may be of more
ultimate valua. Anyway, when I asked him recently
for his formulation of Grosch's Law, I got the fol-
lowing:

"Grosch's Law. (formal): Economy in computing is as the

square root of the speed.

(informal): If you want to do it ten times
as cheap, you have to do it a hundred times
as fast.

(interpretive): No matter how clever the

hardware boys are, the software boys piss it away!"

40

g@ﬂ CPURLS

Here, then, are some thumbnail descrip-
tions of some great, classic or popular com-
puters, expanding our basic diagrams as needed.

Individual computers represent variations
of the patterns shown so far.

The particular structure of registers,
memories and pathways among them is called the
architecture of a computer (see p. 02). The
‘bInary instructions available to the program-
mer are called the instruction-set of the
particular computer (see p. 53). (The word
"architecture" is often used to cover both,
including the instruction-set as well.)

The principal variations among computers
are the word length (in bits-- see "binary
patterns,”" p. 33) and the number and arrange-
ment of main registers. Then come the details
of the instruction-set, especially the ways
in which items are selected from core memory
~- the addressing structure. Then the instruc-
tion-set, whose complications and subtleties
can be considerable indeed.

The individual computer is the complex
result of all of these. If they fit together
well, it is a good design. If they fit to
gether poorly, it is a bad design. A bad de-
sign is usually not so much a matter of overt
stinky features as of ramifications which fit
together disappointingly. (Glitch is a term
often used for such stinky features or rela-
tionships.)}

The possible ways of organizing computing
hardware are vast, and only partly explored.
(An aside to computer guys: on the Intel chip
debugging consoles they have an address trap
(trapping on a presettable effective address)
and a pass counter (trapping after n passes).
How come we haven't seen these sooner?)

The machines mentioned here are an arbi-
trary selection. Some of them are the Great
Numbers, computers so important that folks use
their numbers as proper nouns, with no brand
name:

"Do you have a 360 up there?”

"No, but there's a 6600, a 10 and a
bunch of 8s."

"Personally, I'd rather work on a 5500."

Here is what they are talking about.

Olf;r Atcww\g‘t Ex‘t-.DamrgO
1< or or AL /\5 g

F1ew) o doq6 words

32
'p§9”4

T
///nzxawdxod

o

o oy

add¥mal Tieds \
4 4096 wmvds (4x)

The PDP-8 was designed by Gordon Bell
(in its original version, the PDP-5) about
1960, Originally it cost about $25,000; as
of May 1974 that price is down to about $3000,
or less than a thousand dollars if you want
to buy the circuits and wire it all up your-
self. Yup, here comes that Heathkit.

The PDP-8 has been DEC's hottest seller;
you'll find them in industrial plants and
museumns, or even hidden in the weirdest equip-
ment, from typesetting devices to big disk
drives. At universities all over there are
kids who know them inside out.

Today the PDP-8 seems archaic, with its
one accumulator and awkward addressing schemes:
you can only get to gig different addresses in
core memory directly, and it's chopped up into
pages, But for its time it was a brilliant
design, packed like a parachute, and even to-
day there are people who swear by it. (But
look at what Bell's done lately: the PDP-11.)

So many programs exist for the PDP-8,
though, and so much sentimental fondness, that
it will be with us for the foreseeable future.
Thus the *"Bucky's Wristwatch" example (seegpp.
34-S) is not totally frivolous: we may assume
that a PDP-8 on one or two wristwatch-sized
chips is only a year or so away. But let's
hope they do the 11 first.

(Lookalikes available from Digital Computer
Controls and Fabri-Tek.)

He

1
(59 f@‘f

The IBM 7090 was the classic computer.
Introduced about 1960 and mostly gone by '66,
it was simple and powerful, with clean and
decent instructions., With its daughtsr the
7094, it became virtually standard at uni-
versities, research institutions and scien-~
tific establishments. At many installations
that went on to 360s they long for those
clearminded days.

The 90 had three index registers and
fifteen bits to specify core addresses.
(This meant, of course, that core memory
could ordinarily be no longer than 32,768
words ("32K"-- see "Binary patterns," p. J3.)
A later model, the 94, went up to 7 index
registers, since there were three bits to
select them with,

Aecumdlater’

32K core memor
(32,768 wons u)g)

=L

Tt | Chony
>
Brow, (\s g

bt ;\!:w>

Though these were million-dollar ma-
chines ten years ago, you now hear of them
being offered free to anyone who'll cart
them away; partly because they needed a lot
of power, airconditioning and oso on. But
they were great number crunchers. (If you
want a 90, I believe that 90 lookalikes are
still available from Standard Machines ir
California.)

"teve, &
dl‘Q (3%%%5)1108'

Univac's 1106 and 1108 are fast, highly
regarded machines. In designing the computer
Univac did a clever thing: they built an up-
graded 7094, This meant (as I understand it)
that all the programs from the old 7094 will
run on it, But instead of two main registers
they have 28.

. (Where they found the bits in the instruc-
tion word to select among all those registers
I can't tell you.)}

The 1108 is a larger version, with twice
as many main registers.

Zg otk "3"‘ g
© | e——
]}kx ———— LN “Og
sk has
&kﬁ Or- E§§§§§§§§§§§§§ Sudllay,

seb o

e Y Ay '%Sjﬁﬁ

: ke
. T’;‘i‘
| S ———————

THe 10/ Yomevl7 Je b

DEC's PDP-10 is in some ways the standard scientific
computer that the IBM 7094 was in the sixties.

The PDP-10 is excellent for making highly interactive
systems, since it can respond to every input character
typed by the user.

It is a favorite big computer among research people
and the well-informed. The ARPANET, which connects big
computers at some of the hottest research establishments,
is largely built with PDP-10s. There are PDP-10s at MIT,

U. of Utah, Stanford, Yale, Princeton and Engelbart's shop
(see p. by,). The #atkins Box (see p.3m33) hooks to a 10.

Digital Equipment Corporation, aware that its computer
trademark "PDP" connotes minicomputers to the uninformed,
now wants the 10 to be called DECsystem-10 rather than PDP.
We'll see if that catches on.

Who designed it is not entirely clear. I've heard
people attribute it variously to the Model Railroading Club
at MIT, to Gordon Bell, and one Alan Kotok.

Originally it was the PDP-6, which appeared about 1964,
and was the first computer to be supplied with a time-sharing
system, which worked from the beginning, iF rockily. Now
it's good and solid. DEC's operating system for it (see p.
45) is called TOPS, but BBN sells one called TENEX, also
highly regarded. The 10 does time-sharing, real-time pro-
gramming and batch processing simultaneously, swapping to
changeable areas of core memory. (This feature should soon
be available, at last, on IBM computers ("VS2-2").)

PDP-10 time-sharing works even if you don't have a disk,
using DECtape (DEC's cute little tapes). Of course, without
disk it's really hobbling, but this capacity is nevertheless
noteworthy.

The PDP-10 has debugging commands which work under time-
sharing and with all languages, and hugely simplify program-
ming.

Unlike the IBM 360, whose hardware protection comes in
options, the 10 has seven levels of protection: the user can
specify who may read his files, run them, change them, and do
four other things. The PDP-10 does have job control commands,
but they are not even comparable in cumberosity to IBM's JCL
Language (see p. 31), and they are the same for all three
modes of operation: time-sharing, real-time and batch.

sk u)

<> Sty
o Reprt

Oﬂ»wq

Float-c, Pt
— Harkeee
I you cant T }Or:f'“\
seNERL xes:ne‘:';:u =
T st cocanews gy =)
msrEap, N A“j 'Cyﬂ%r
A wy e

ik
A pfﬂer\
A
)

hasdie vp o 6%
ot e vsevs

(Metar Line Staunar oawl)

s

The PDP-10 has 36 bits but has instructions to operate
on chunks, or bytes, of any length. It has sixteen main reg-
isters, as does the 360, but uses them more efficiently.

The PDP-10 also has unlimited indirect addressing: an
instruction can take its effective address from another lo-
cation, which can in turn say to take its effective address
elsewhere, ad infinitum. For your heavy tight elegant stuff.

Perhaps most important, the 10 has a full set of stack
instructions (see "The Magic of the Stack," p. 42), allowing
programmers to use multiple stacks for purposes of their own.
(The operating system's own stacks are protected.) Program-
mers do not have to save each other's registers, as on the 360.
Programmers are relatively safe from each other.

Wi ket]
i e

T{M““—' *oo1g Herory Addresg

Bre — T
PBP-10 \/-\}\MJ LAA) —
INSTRVCT 108 1”; 4 ‘ Y 8-L
ot adqress
‘j:::ir (J"N?Iy veaches 255k)

Some think of the PDP-6 and 10 as a glorified 7094 (with
18 addressing bits, instead of 15). In this case we might
consider the 360 a stripped-down version of the 6, since IBM
threw out the stack and in most models the memory mapping.

PDP-10s are ordinarily sold where the views of scientists
and engineers are considered important, and comptrollers do
not have first choice, Nevertheless, some say that its busi-
ness-programming facilities (i.e., COBOL, duh) are just as good
as those of companies who claim to have designed computers 'for
all purposes.” First National City Bank of New York has found
that the PDP-10 makes a splendid banking computer for internal
use, profitable at an internal charge of $3.75 an hour plus
processing charges. Prices for a PDP-10 system with disk start
start about $500,000, or $15 grand a month, and go up into the
millions.

However, DEC salesmen are not like IBM's, who can reputed-
ly sell Eskimos to iceboxes. For one thing, DEC salesmen are
on salary. That fits DEC's demure, aw-shucks image, but it
doesn't exactly sell big computers.

(For you Firesign Theater fans, the mutterings of the
dying computer on the "Bozos" album are various PDP-10 system
thingies, artistically juxtaposed.)

%&{) 4570 (3141, 165, 8 L, Y L)

“No corporation ezcept IBM could sell a computer like this." —- A friend.

The IBM 360 (now called 370 because we're in the 70s) is

the commonest and most successful line of computer in the world.

This does not necessarily mean it is the best. There are those
who appreciate IBM typewriters but not their computers,

360s are bought because the repair service is great; be-
cause IBM has very tough salesmen; and possibly for other rea-
sons {see pp. 52-6).

A strange unseen curse seems to haunt the 360 series; in-
dged, some cynics even think it results from deliberate poli-
cies of IBM! Yet the 360 (and its software) seem somehow or-
ganized to make programs inefficient and slow; to make progranms
big, needing lots of core memory (with numerous enticements for
the programmer to take up more); to prevent the compatibilities
that are so widely advertised, except through expensive options;
to make things excessively complicated, thus locking in both its
customers and the employees of its customers to practices and
intricacies that are somehow unnecessary on other brands of
computer.

16 maw reaiie,
(32 !,-hj)—1 -

ey gty
3 v) r(.rw:?\)

—

s T oy Ly Oty Sy N
i NZ"; alent 1:@".#/, w?ﬁ 304)

Daray e

[SZCN R
/ [
R

<n g
Ko WS,
slow dontg il omoe
Srcesiores

The design of the 360, which was basically decent, is gen-
erally attributed to Amdahl, Blaauw and Brooks. Those who hate
it, and there are many, base their complaints largely on the
restrictions and complications associated with its operating
system OS, which is notoriously inefficient (see p. 45).

The architecture of the 360 was quite similar to the PDP-6
(now the PDP-10), designed about the same time: sixteen main
general-purpose registers of over thirty bits, and using the
16 main registers as either accumulators or index registers.

A curious form of addressing was adopted, called "base-
register addressing." This had certain advantages for the oper-
ating system that was planned, and was thought to be sufficient-
ly powerful that you wouldn't need Indirect Addressing. Two
main registers were required, one holding a 'base' more or less

equal to the program's starting address, and an "index register,"

whose contents are added to the base to specify an address.
Often a third number, or "offset," is added as well.

reysters

The idea of this technique is that programs can be "relo-
catable," operating anywhere in core memory. A few instructions
at the beginning of each program can ascertain where it is run-
ning from, and establish the Base accordingly.

The basic idea of the 360 seems to have been doped out for
multiprogramming, or the simultaneocus running of several pro-
grams in core, a feature IBM has pushed heavily with this com-
puter.

WHAT'S WRONG WITH THE 3607

The main differences between the 360 and the PDP-6 and 10
represent conscious and legitimate and arguable design decisions.
To fans of the PDP-6 and 10, here are the 360's main drawbacks:

NO INDIRECT ADDRESSING. This was because, within the ad-
dressing scheme adopted, indirect addresses could not be adjusted
automatically. (But it also makes programs more inefficient,
thus more profitable to IBM.)

NO STACK. Why? Too expensive, said Amdahl, Blaauw and
Brooks in the IBM Systems Journal. Funny, they have stacks on
$5000 PDP-11s-= and it would have saved everybody a lot of
money on programming. -

NO MEMORY MAPPING (except on certain models). Where the
PDP-6's successor, the PDP-10, automatically takes care of re-
distributing addresses in core to service every program as if
it were operating from location zero on up, the 360 left this
general problem to local programmers and (on certain levels) to
operating systems.

Handling this automatically in the PDP-10's hardware ob-
viates the complications of base-index addressing and makes pos-
sible the efficiencies of indirect addressing.

LOOKALIKES

360 lookalikes were sold by RCA and Univac. Now that RCA
no longer makes computers, Univac is servicing the ones they
made.

And Amdahl, no longer with IBM and now head of the Amdahl
Corp., is coming down the pike with a super-360 of his own, in
part backed by Japanese money. It will be bigger than IBM's
biggest-- and cheaper. (See Hesh Wiener, "Outdoing IBM: the
Amdahl Challenge,” Computer Decisions, March 73, 18-20.)

7

\ress

ity
S

trols, sells a Nova lookalike.
General will sell you its programs to run on
it is another question.

™e

{*Srety -
hoddrek)

(60 +i)
FIKST OF THE

SOPERCOMPUTE RS, Al 6400, (800,

Control Data's 6600 computer was the
first really big computer. The first one was
delivered around 1965. The machine and its
operating system, CHIPPEWA, were created by
Seymour Cray and his team in hinterland Min-
nesota.

Extreme speed was designed into the com-
puter in a number of ways. The main computer
has no input or output at all; this is hand-
led by data channels which have been built up
into full-scale minicemputers or "peripheral
processors’ of 18 bits.

7w i

A

14
Vivous ledlecd 5em5ovs,

[@3 © v
m\';;‘:q ?ﬁ,\. !
) T

,

the Classic TLINC ¢

Jorded e o 2g-errd recPons

(el Wy ie
Core memar

ymar.,\ s ey ..,1‘,4\1

Letweon:

LM (LewomMener !»Jc")

A g
asd

UME ("Oyper Mmﬁ\').}wk"

Seleeed vmder Proqine. Cofvel

F Lol ke v aMrey

1 welly sercen o—vt.,me? D

"8 B adir

"TE
for bian haty

A0

’.m«wnvxs ot

e
B

fEIPRERN, £ROCESTORY (W dledged b miiconpten)
RO 'y r

S e pa

L o I
-~ .
P e

b e Tt

Instructions can be executed at light-
ning speed, much faster than the usual micro-
second or so. - However, since core memory is
much slower than the main registers, a trick
is used: program instructions are drawn from
core into a superfast instruction list foften
called a cache), and any jumps or loops wich-
in this seven-word cache can be executed at
unthinkable speeds-- perhaps tens of millions
of times per second.

The machine is especially geared for
floating-point numbers (see p. Q). Because
of the intense speed of the fast instruction
cache, many instructions (such as multiplica-
tion and division of integers} can be accom-
plished faster by a short program than if

they had actually been wired 1nto the computer.

They 6600 became the start of a whole
line, including the 6400, 6800 and otherss
The 6400 is used by PLATO (sec p.hwit .

% NoVA

(16 %)

| S ——— -
ﬁ‘ﬁ}
c——— Slo Dewiaws
T
2
oy e
Dok
Ut 96 <
Sra
— Choonnd

The Nova came out in the late sixties.
Basically the story was this: some of the
higher people at DEC, perhaps dissatisfied
with DEC's soft sell, perhaps out for their
own personal share of things, broke out and
started their own corporation. They had in
hand the design for a hot, solid minicomputer
-— some say it was the rejected design forthe
as-yet-nonexistent PDP-11-- and since then
they have built it reliable and sold it hard.

The basic design of the Nova is sleek
and simple: four main registers, no stack,
well-designed instructions. Moreover, it
was (I think) the first computer to be built
around a Grand Bus (see’ 35, a design which
has caught on rather widely.

Data General (the company mentioned)
has used a very interesting marketing strat-
egy. Instead of bringing out a variety of
new computers as time goes on, they concen=
trate on making the Nova faster and swmaller.
They began by competing against DEC-- es-
pecially in "the OEM market," purchasers who
are burying minicomputers in larger equipment
they in turn make-- but more recently they
have actually started to market against IBM
with business systems. In recent months,
Data General ads have ridiculed the complex-
ity and mystery of IBM systems, arguing quite
rightly that minicomputers programmed in
BASIC are a reasonable alternative for a wide
variety of business applicatons.

The Nova's instruction-set is clean
and straightforward. Key examples (first
bits only):

00000 Jump (thus an all-zero in-
struction jumps to loc §)

0000X Subroutine jump

000X0 Increment, skip if zero

000XX Decrement, skip if zero

00X Load AC

oxo Store AC

X Instructions among registers.

One competitor, Digital Computer Con-
Whether Data

ek od

A computer named the LINC, now usually
referred to as "the classic Linc," was perhaps
the first minicomputer. It was an important
forerunner of our highly interactive systems of
today, notably including today's graphic dis-
plays with double program followers (see p.
»mi3), which offer the highest interactive
capabilities.

Perhaps most importantly, it was designed
with none of the biases that creep in from the
traditions of business computing.

It was called the Linc because it was
designed at Lincoln Laboratories (about 1960),
for "biomedical research”-- actually it was
the sort of computer you'd wani for hooking
up to all sorts of inputs and o tputs, to
make music, to run your darkroom, but only
medical scientists could afford it, so that's
what the‘y said it was for.

The LINC had two interesting innovations.
It was probably the first computer to be des-
igned with a built-in CRT display (see flip
side). It also came with a funny little tape
drive, designed for reliability and high res-
ponse, that was supposed to perform almost as
conveniently as a disk and be reliable even
in dusty or messy environments. This was the
LINCtape, still offered as an accessory by one
company. DEC adapted it somewhat and made it
the DECtape, handy pocket tape unit of the PDP
computer line.

It was never sold commercially. A dozen -
or so were made up specially out of DEC mod-
ules and dealt out to various scientists, and
the general hope was that DEC would take the
machine up as part of its product line, but
that's not what happened. DEC instead pushed
its PDP-8& and gave us instead, by and by,

ke NC-8

12 bk e morviage
{ $pPg Wil T LNC)
A
e [P M ameen)] U
PRC = | Aty Pa 0 ot e by £
fOUCRR |, §p"

PRCGRAM
Pllower, 7
NI

9
e ﬂ/d

< Ry

.
o [oae]
s (’r-ﬁh,,{
e, CC e et

- amadeq detiecs)

PA et vy

DEC was offered the option of building
Lincoln Laboratories' classic LINC, but deci-
ded instead to combine it, in the mid-sixties,
with the already-successful PDP-8, That way
all the PDP-8 programs and most of the LINC
programs would work on it. The result is kind
of strange, but very popular in biomedical re-
search: two computers in one, handing control
back and forth as needed. You can write pro-
grams on the Linc with sections for the 8, and
vice versa. Hmm. A more recent and slicker
version is called the PDP-12.

¥hile you might half-think that both
sides of the computer could work simultaneously,
giving you double speed, it doesn't work that
way, There's only one core memory, and that
sets the basic speed; either a PDP-8 instruc-
tion or a Linc instruction can be underway at
once, but not both.

Nevertheless, we see here the double
structure that plays such an important part
in highly interactive computer displays (see
ps HM2DH). Indeed, Linc programmers often
use the machine just that way: the PDP-8 run-
ning an actual program, the Linc part running
the CRT display in conjunction with it.

AAAAAAAAAAAARAAAA

A horrifying and weird picture of an experi-
mental monkey sitting on a PDP-12 and making
like the Creature from the Black Lagoon is
to be seen in Time, 14 Jan 74, p, 54, It
looks very scientific.

BIBLIOGRAPHY

The classic book: C. Gordon Bell and Allen

Newell, Computer Structures: Readings
and Ex;mp es. cGraw-TITIT, 1 .

Note that Bell designed various
of the PDPs, and Newell pioneered in
list processing (see p. 26).

Computer Characteristics Review keeps you

hp—ffrtouc with the traits of available
computers and peripherals. §$25/year
(3 issues) GML Corp., 594 Marrett Rd.,
Lexington, MA 02173.

Other firms, such as Auerbach,
offer more expensive services of the
same nature.

B. Beizer, The Architecture and Engineering
of Digital Computer Complexes. enum

Tess, 2 vols,,

Heavier than Bell and Newell. A
catalog of thousands of structures and
tricks, emphasizing the tradeoffs among
them.

42

\TuVé%ﬁT

£ 5500
(3NN olscure)

core

’

[m——

—

—
TFex ?ﬁﬂ‘ﬁ

I have heard no computer more widely
praised among computer people than the Bur-
roughs 5000 (replaced by the 5500). The 5000
was designed about 1960 by Edward Glaser and
Bob Barton. It was designed to be used only
with higher languages, not allowin; rogram-
mers access to the binary instruct%ogs %hem-
selves, Indeed, it was particularly designed
to be used with ALGOL, which would have been
the standard language if IBM had allowed it
{(see p. 7R1) and is still the "international”
language.

Because of this approach, its main regis-
ters were to be hidden from the programmer,
and attention centered instead upon the stack,
a high-level programming device (see box on
Stacks). However, index registers were added
to make it better for Fortran.

The 5000 was marketed as an '"all-purpose"
computer with an cperating system, anticipating
IBM's 360 of a few years later, Indeed, after
the 360 was announced, Burroughs sales picked
up, because IBM salesmen were at last-promoting
the concepts that customers hadn't understood
when they heard about them from Burroughs
salesmen years before.

Bigger machines in the line are now the
6500, 6700...

The Burroughs Corporation continues to
be an acknowledged leader in computer design.
Apparently their sales force is something else,
unfortunately. I once spent some time with a
Burroughs salesman who not only knew nothing
about the magnificent structure of the machine
he represented, but would not get me further
information unless I demonstrated that the
company’ I represented (a large corporation)
was seriously interested. He wore very fancy
clotEEET_—__x

T&\C”Nﬁ'(rld,
SracK_

The Stack is a mechanism-- either

plications at the same time.

previously working on.

them all.
It goes like this: if the program

in core memory at a place specified by
number called a stack

something else has to go on the stack.
is called a PUSH.
" "
post
g T
s
ot h,; s
-
ety
When a program is ready to resume

ious activity,
pointer points to.
e

~Pop/-

2K

this trick has immense power.

the addresses of programs, data we are

previously.

very freely., It is possible,

LR Y THING
R

DELLPLTY
INTERTWINGED.

track of where you've been.

\
o R
¥
< RAt
ety I

Retorn
(er

from at the end of each subroutine.

=Sch

al

built

into the computer (“hardware") or incorpora-
ted in a program (“software") which allows a
computer to keep track of a vast number of

different activities, interruptions and com-

Basically, it is a mechanism which allows
a program to throw something over its shoulder
in order to do something else, then reach back
over its shoulder to get back what it was
But no matter how many
things it throws over its shoulder, everything
stays orderly and continues to work smoothly,
till it has resumed everything and finished

has

to set aside one thing, it puts that one thing

a

pointe Then it adds
one to the stack pointer, to be ready in case

This

a prev-

it subtracts one from the
stack pointer and fetches whatever that stack
This is called a POP,

It may not be immediately obvicus, but
For instance,
we may stack any number of things together--

moving

between programs, intermediate results, and
codes that show what the computer was doing

Using stacks, programs may use each other
for instance,

to jump among subroutines-- independent little
programs-- willy-nilly, using a stack to keep

In this case the stack holds the previous
locations and intermediate data, so that the
program follower can go back where it came

ST,
SURKOUT INING

— 1ad,
T

T hete I
PRREEv R

ThisAeven makes possible "re-entrant" programs,
meaning subroutines that can be used simul-
taneously by different programs without mixup,
and “recursive" programs, meaning programs

that manage to call themselves when they
themselves are in progress.

RO
peree

Stacks are also used for handling "interrupts"
-- signals from outside that require the
computer to set aside one job for another.
Having a built-in hardware stack enables the
interrupts to pile up without confusion:

Fupa e
w astery e TN
R
AR el aode

Finally, stack arithmetic, like that done on
the Burrolghs § » enables arithmetic (and
other algebraic types of activity) to be han-
qled without setting aside registers or space
in core memory. As a simple-minded example
on a hypothetical machine, suppose we wanted
to handle

2+ 7x3

On this machine, let's say, this gets compiled

to a program and a stack:
STask

A z

I

Then the operations are carried out on the
stack itself:

Egl%-?uy, _.
* ji‘”"?“‘”
i
oy
. i hfradt dew, | T30
(ot By el =T

_Stack programming tends to be efficient
particularly in its use of core memory.

7T ek

Y e, 4

T
I

T Pk rendts

Some languages, such as Algol and TRAC
Language, require stacks.

Some computer companies, such as IBM,
resolutely ignore stack architecture, though
hardware stacks have become widely adopted
in the field.

e GRADEYS

In electronics, a "bus" is a common
connector that supplies power or signals to
and from several destinations. In computers,
a "bus" is a common connection among several
points, using carrying a complex parallel
signal.

The Grand Bus, a new idea among computers,
is catching on. (The term is used here be-
cause the colloquial term, "Unibus,” is a DEC
trademark.)

Basically the Grand Bus is a connector
of multiple wires that goes among several
pieces of equipment. So far that's just a
bus. But a Grand Bus is one that allows the
different pieces of equipment to be changed
and replaced easily, because signals to any
common piece of equipment just go out on the
bus.

This means that the interface problem
is deeply simplified, because any device with
a proper bus interface can simply be plugged
onto the bus.

It does mean a lot more complexity of
signals, The Unibus, for example, has about
fifty parallel strands. But that means var-
ious tricky electrical dialogues can rapidly
give instructions to devices and consider re-
plies about their status, in quick and stan-
dardized ways.

Prominent grand buses include:

The Nova bus (nameless; the first?)}

The PDP-11 is not a beginner's computer.
But the power and elegance of its architecture
have established it, since its introduction in
1970, as perhaps the foremost small computer
in the world.

Actually, though, we can't be too sure
about the word "small.” Because as successive
parts of the line are unveiled, it becomes in-
creasingly clear that this line of "small"
computers has been designed to include some
very powerful machines and coupling techniques
among them; and it would seem that we haven't
seen everything yet.

A} spenstions
=yy\$ e
+

£xe RN

&F

In other words, DEC's PDP-11,
which has already cut into sales
of their PDP-8 12-bit series and
PDP-15 18-bit series, may soon cut
into its PDP-10 36-bit series-- as
designer Bell unveils {perhaps)
monster PDP-11s in arrays or double
word-length or whatever.

The PDP-11 was designed by C. Gordon Bell
and his associates at Carnegie-Mellon Univer-
sity. In designing the architecture, and es-
pecially the instruction-set, they simulated
a wide variety of possibilities before the
final design was decided. The resulting ar-
chitecture is extremely efficient and powerful
(see box, "The 11's Modes").

i

!
et

Basically it is a 16-bit machine, with
most instructions operating on 8-bit data as
well.

There are eight main registers. Two,
though, function specially: the program coun-
ter (that part of the program follower that
holds the number of the next instruction),
the hardware stack pointer, both follow the
same programming Tules as the main registers
an unusual technique. Thus a jump in the pro-
gram is simply a "“move" instruction, in which
the next program address is 'moved" into main
register #7, the program counter.

and

In addition, all external devices seem to
the program to be stored in core memory. That
is, the interface registers of accessories
have "addresses' numerically similar to core
locations-- so the program just "moves' data,
with MOVE instructions, to doorways in core.
(This is facilitated by the automatic handling
of previously bothersome stuff, like Ready,
Wait and Done bits,)

Physically all devices are simply attached
to a great sash of wires called a Unibus. (See
Grand Bus box.)

BIBLIOBRAPHY

R.W. Southern, PDP-11 Programmin
Fundamentals. rogramme§ WoTk-
ook, o price listed.) Algon-
quin College Bookstore, 138§ Wood-
roffe Avenue, Ottawa, Ontario,
Canada K2G-1V8,

feok o

roram folfouter

AN
€ore memon
wheve ey

date (b g

e e
Denee Fr&ax ovg

PDP-11 lookalikes are
— sold by Cal Data., Other firms
have been scared off by DEC's
patent, but Cal Data say they
have a patent too.

PDP-11's Unibus
Lockheed SUE's Infibus
PDP-8's Omnibus,

The idea is great in general. For your
home audio equipment, for instance, Grand Bus
architecture would simplify everything.

Not only that, but Detroit is supposedly
going to put your car's electrical system on
a Grand Bus. This will mean you can tell at
once what is and isn't working, and hook up
new goodies easily.

Minicomputers are cramped, and so the basic
problem in mini architecture is how to cram into

.5'/ Jeels o)
e 41}
ARGIC ModES

in core memory.

ent combinations and structures.

In designing the PDP-11, Gordon Bell and his
co-workers systematically sought a powerful sol-
ution, simulating various possible structures by
computer program, trying out a variety of differ—

the instruction enough choices for getting around

The elegance and power of the solution are

little short of breathtaking.

Basically the PDP-

11, the final design, provides seven different

types of indirect addressing.

The computer's

main registers may be used both to operate on
information (the usual technique, here called
mode zero), or to point to locations to be oper-

ated on ({indirect modes 1 through 7).

These

provide extremely efficient means for stepping
through tables, PUSH and POP, dispatch tables,

and various other programming techniques.

The

following diagram is meant for handy reference.

Sr

L

=

@

4 Bt v eme
FLn® Tt
NG

s wovd
aloue
corren
praae:]
. i~ protam
tisdesed "
defervel
[C2)

b Ot 5! New hpirdie
SRV

There are a lot of strange computers being
designed-- it's a traditional occupation of
electronics professors and a great way to soak
the Defense Department-- but this one is com-
mercially available. Now if we just knew what
to do with it.

e
Iy

PE; (“pnm,,, Elenelfs’ —

Goodyear's STARAN is the first available
computer with a Content-Addressable Memory,
which is actually very hot stuff. Instead of
having to search for a particular item of infor-
mation in core, or having to make lists of where
in core things are being put, or creating linked
data structures (see p. 2(), the program can
simply ask all items of data having particular
properties to step forward.

ack o f-Fledye

comp Sher

(:LmA))_

The Illiac IV is the biggest and most
extraordinary computer in the world, knock
wood. To most computer pecple it's as big as
anything they want to think about.

The Illiac 4 consists of sixty-four big-
gish computers, all going at once under the
supervision of yet another big computer, typ-
ically all working on a single problem. It
is the brainchild of Daniel Slotnick, who
worked on the theory of array computers and
pressed for its creation for years; eventually
built by Burroughs, it sits at an airbase but
is available to outside users through the
ARPA network.,

In principle the idea is this: certain
classes of problems, especially those involv-
ing very large arrays and matrices, can be
run only rather slowly on ordinary computers,
If, however, a computer is built which itself
is an array, certain operations can take placc
very much faster because they happen in paral-
lel units simultaneously. Matrices, partic-
ular formal kinds of array, are used in a
great variety of mathematical-type applications.
For instance, weather prediction. It seems
that the theory of weather prediction has been
well worked out for decades, but because the
swirly behavior of the atmosphere is so intri-
cate, actually calculating out everything in-
volves billions of operations. At one confer-
ence session I believe it was explained that
it used to take twenty-five hours to predict
the weather twenty-four hours in advance, whi
which means you get the answer an hour after
it's happened already; now it is possible,
using Illiac IV, to do the whole planet's wea-
ther in an hour and a half, said the speaker.

,AMD o kends

el fion b5 phos PAA
(M Te fast 4 Tells
wheTho— R sfol s “"77)

It works like this.. Having an immense 256-
bit word to play with, the programmer uses dif-
ferent parts or "fields" of the word (see p. 72, g.(.z)
to specify what other information is in it:

Fot secon
1 ey I\LA*
#:;ﬂw
With a single command, the program may ask
all words in memory to clear a particular field,
or set a particular bit. Then with another com-
mand it can tell all memory locations with par-
ticular identifiers to add a certain number to
their data, and this occurs in a couple of micro-
seconds. Or it can direct all memory locations
having particular identifiers to multiply one
section of their data by another-- which takes
rather longer.

—)
ofe

Dara

Some say that may be its only use and
the whole project was inadequately thought
out. Others suspect it's really intended as
a radar-watcher for the ABM system.

This is an entirely different kind of pro-
gramming, and considering how much thought com-
puter people have given to doing things one at a
time, it kind of sets you back a little. The
brochure lists these possible applications:
"ballistic missile defense,” "intelligence data
processing," "electronic warfare,® Mairborne
command and control," as well as more peaceful
applications like weather prediction, data man-
agement, transportation reservations, air traffic
control. Truth is, most computer people would
have to scratch their- heads quite a while to fig-
ure out how to start using this fascinating ma-
chine for any of these things; the reason the
military applications seem to be so many is sim-
ply that the military computer types have been
seratching their heads longer. We might as
well start too, and find some of the nicer things
to do for humanity with it.

Anyway, there it is, And the individual
briefcase-sized Burroughs machines, if they're
ever marketed, may provide a new price break-
through for small highpower systems.

Y e

Incidentally, '"Illiac" is the traditional
name for computers built at the University of
Tllinois. Will the series end with this one?

BIBLIOGRAPHY

Daniel J. Slotnick, "Unconventional Systems.”
Proc. SJCC 1967, 477-481.

Bibliography: Jack A. Rudolph, ®A Production
Implementation of an Associative Array Pro-
cessor-~ STARAN,® Proc. FJCC 72, 229-241.

Contact: Computer Division Marketing, Goodyear
Aerospace Corp. Akron, 0. 44315.

Yo
A“b; ,"J fe el e i

=
3 3

o |vT

NI A

SR
Whiforer elestrncs] tangle
(‘anhl’(e‘l\)‘ud“ ouwret

—eonderlen not shows

An interesting but little-known computer
was the Ambilog, made by Adage, Inc. of Bos-
ton, a most innevative machine first marketed
in the mid-sixties.

The Ambilog is a hybrid computer, i.e.,
both digital and analog (nete Analog Compu-
ters, p. i) , it was mentioned that "analog
computers" are any electrical circuits set up
to produce a result according to some formula).
For certain types of repetitive functiomns,
analog makes a lot of sense. Thus the Adage
people put this machine together for highly
efficient hybrid computing.

was to have a highly
could take in and put
signals at high rates.

The essential idea
ventilated machine that
out measurable electric
What they created was a rather straightforward
digital computer with a lot of registers and
converters to send analog information out and
bring it back in. This meant that problems
suited to repetitive electrical twisting and
measurement could gush out through special
analog circaits,tand the "answers' or doctored
signals could gush back in.

The instruction-set was designed for this
high-speed management of input and output.

The principal applicatiecns this equigment
has been used for are three-dimensional dis-

play (see Adage Display, p.pMDO)vand_Fourier
analysis for sound and other applications (see

D oWEa 1 OMIL).
CELLYAI 37STEM

~ ~

N
Te & from.

woiter condn|

Corme

Now that integrated circuits are gettaing
cheap, the distinction between registers (where
things happen to information) and memory (where
nothing happens to information) can be recon-
sidered. Storing information in cells that can
themselves perform actions, or having numerous
subsystems in which computation takes place,
leads to a fascinating variety of possible ar-
chitectures. These are generically called
%cellular® computers; this is slightly ironic
considering that the living cell itself is now
known to e at least a digital memory. and prob-
ably more (see p. (PO).

Examples of cellular computers moie or less
include STARAN, ILLIAC IV and _the author's own
hypothetical FANTASMt® (see pY~38). But this
type of architecture has barely begun.

Comments

Some Popular Minis

Company

é - -
O . 2 -
8 o 9 ¥ 8 o -
N z = § 2 R g (E B
1 & 2 = Cog N g EINE] ke
5 S s T o = o & g] Y .
2 & . I 8 @ ~ 2
o 3 2w =3 o n 5 Q. Iy c
8 =29 a b . o . £ 48 £ F - S
2 & B8 @ £ & ~ = Lw >3 GRS N o 2
= E = 5&) © © o 9 E = z w2
£g9 § 3% P [2 B EcE - g3 2. g3e Tas .5 g 8
EE,e 8% S, 2a .S 2 8 NE-- T -2 5. 38 828 ;8 8 & 8
“5%% g2 P 2.8 0% e pE 14 P @@ - I, o9 P > Qg
287 E3 2% 2y £ Y i3 §Ew =24 B3z §g,2 I £
5238 s Sz By ES s] g2 4 @ Y o2 g8 R g LS e 5 ©F .
= o 2 9|3 B S a D X & @ -~ S 328 E @] FEES = a
5§28 aE © paoale &8 g o] I3 T ae afg 521 a2 & §Anma O u®a 2
2528 &2 = d593 w8l ¢ 58 £ R £58 85. fEg gag3e o B, 5
= 2 E L] el k] = a9 g o 4
Tz E g ® 2y o o= Y @ 3 & - SR ® mu e~] © 85 2 ag
x 8 §F | 29 < 2 P R e g8~ 58 va"g w_ 2 83 & w
S as] .9 k 3| 3 5 P g2 & 5] g 8.8 "8 pEE g E 5
CR p d £ d= @ 2 oo pd £ <2 a N W g 5 =g 2 B8 Ew £
o WD g ex Z I £| =} 8 -l g = @ = PR | S =] [) L O =}
HEce® %8 B3 S O >I% » 5 53 8 =8 = £ = LR R oaeg a 27 o = >0 oac = P v g
RN > =8 B e H © 2E g = - = 28 Lag - < 4 9 8 %2
IFES nmn8 IS & 25 2z] & @ P © 822 k3 2078 g g & = S89§ o D -3 Al
musu 88 O a % 2 & S o 2 & I o S a 59 o 85 o380 QO Hw g <
2 s 3 cE g adlg gﬁ 2 28 535 g ERR 8= 36=2 gim = g2e3 o oS8g 23
g
5 2/ g FR
-~ .9 fo
2 Q 8o %w E
_— E T MIN VTERS. «—— z g fdz £g
. . 2 - & <ad 3%
s F g —
s . - 2
g 3 /el:uj s mcomplefe, 4of wt-bad, - =
g i) [o menvfactorers.) g
2 @ ~ H :
. 2. o~ Ky - o
5. 2w E:)] b
2 £8 = ~
L 2% s g 3 h 3
TS A~ & < = 3 2 | 2
f: ZES 33 c : 3 2 z 2 2 o
~ ~a EuE HE - < 2 o - S = ~ 3 238 28
2 ~a .3 og8 23 ~ 2 2 23] @ ~ — @ =) - =5 ~TE
= LR ~ LEY ww 2 ~ =2 g 23 c 2 a @ = @ s = 3l oo gaxo
a =253 m - 8% g2 3) - B & a8 N 3 =] B = 8 B o © o How
@ 2 % e e pwme o 5 % gz i) 2 A hs © = S © - oz 588 =g
g =83 B 5% 9. § B 3 2 22 & p s = @ S © <3<} 22 3%
z sce 2 9 SRe © o 2 g ~ = = 2 5 z [- fod 8 come= 9 -1
ol QE Epp ®6T g & o © o 3 ~ £ < s = 5 2 23 °E82
o e o1 @ @ ad - =g Rl £ g = o 2 ¥ @ EE QO
A 2 °¢f §§5F T 2 2 se T g = z S 3 PR s o 3 SEE8 eF%F 29 g
2 A de dy $3 2488 EE£F O S 8 e &0 K ° 3 _; 2 € a g S 3 SERE S8t Mma &
=] apa om S5 > o) > = T >3 o - S S 0 QA m@moS
- IS3 A) -] (SR %) < 3 C] p a < om
A B AR =z = S>> u 2 R = as » =3 * [= @ = a S = SRad maa oo B
@
]
5 s g
@ o 5 = @ e = 3
. . 3
. @® o @ - g o o .. ETD P .3
2 . = F- ; 2 £ 2 o G s 40K . o E
g @ 2 R 4 Qg e 85=3 = .® = gE 2E- 2 = o @ g
3 22 5 g 3 - £ 297 S5 rgag z EE B8R, 8¢ g P
o . CEe o B =8 e S, DZe 22 227% = ;S Az P=8 R g
2. dow a8 5,8 8 = L& GFS £A& 2558, $mf 2.3 2§23 B3 Lo~ 3E% R s
e . S awn) P . =3) - @ & . = - g
£3 82 %93 355 33% Bzg . S; eSS §3¢ £08S g9g Sa, FEE §8 fxg .4 GE i3
a4 . E2 3 JEE HBeam g RT® 5 - o 2 &3 s aA = E [$) > £
= 3 EE =2 E53 Exs o EXC] - R R kB 2 . 2 Ad EEg g E - e o
K, - - 8 ERE -1 - a8z 5P e 922 a9 - PR oM w g 13 14 @ 2.8 . o e = Z a
A £ %8¢ =2 d g% B Sge gFEL 22 HE%e A%y HEE <8 & 5388 = &% R8s 4 Sg _ & 3
EX] 3 ATE 89 2o sy .8 Edg £98 HBeg mg 23 . §0 2% OSn9 L28 w g 53 - 3 i 2
“g 58 12% S5 g EAf €82 C23 wsi jEEr f4: £35 82, 2P g8z FAE ki §23 % 3 3 B
= 3 @ 3 - o = E 2 < S) Sz 2 - B i1 LA | 2 5] o S B B
a5 5 328 Hxf £%3 8 9@ 98 23 2 g5 g8 =& 5 i o $ag & 2 g
28 E] @ &] = o 818z El LA S & I @ £
] 24 §34 58 fs5 322 ESE 5o £3: %333 gBp zsi fE:r Pz 3E: ffg 3EEF ER% ik § § 3
a K 3 =2 9 & ENOC gFowm A8 §an Zea ES g~ = - &= 3 & a = S £

Engelwood Cliffs, NJ 07632

704
706
707

Raytheon, Inc.

v

A microprocessor simply means

HERE THEY COME — #he

MICROPROCESSORS !

CoMuTERS INSIDE COMPUTERS

"Big fleas have little fleas that bite ‘em;
And so forth, ad infinitum."
Proverb

Microprocessors are what's happening.

Computers cost several thousand bucks on up.
Microprocessors cost several hundred on up, and
that price range is falling fast.

Some microprocessors are already on integra-
ted circuits, postage stamp-sized electronic
tangles that are simply printed and baked, rather
than wired up; this means there is effectively
no bottom limit to the price of microprocessors.
Mark this well. It means that in a few years
there will be a microprocessor in your refriger-
ator, your typewriter, your lawnmower, your car,
and possibly your wallet. (If you don't believe
this, look what happened to pocket calculators in
the last couple of years. The chip those are
built around costs five bucks. But next come the
programmable chips, the microprocessors.)

Microprocessors should not be called micro-
computers, a term that seems to have captivated
Wa[g Ttreet lately. "Microcomputer'" just means
any teeny computer; but there is an exact and
crucial difference between an ordinary computer
(whatever its size) and a microprocessor (what-
ever its size).

A microprocessor is a two-level computer.

You will remember from the "Rock Bottom"
section (pp. 32-3) that every computer has an
internal language of binary patterns or "machine
language" (illustrated in horrendous detail in
the program called "Bucky's Wristwatch," pp.33-4).

AR REG TERS
| mea——

'K%g 5!"3

X

15 Twirek o)
% ﬁa—"
’F;" I‘A"“‘lqs
of machina la
L i
Well, a microprocessor has two levels. It
has an upper-level program follower with its own
binary program; but each instruction of this
upper-level program is in turn carried out by a
program follower tunning a program at a lower

level-- called a microprogram.

OWEUkOE .

“GoRE MEMORT-

(stow)

This has some extraordinary ramifications.

First of all, it means that the upper-level
binary language can be anything you want-- that is,

any feasible computer language-- because each of
its instruction$, in turn, will be carried out by
program.

This means, for instance, that machines can
be created which may be programmed directly in some
higher-level language, such as APL (note Canadian
machine described on p. Z'%) or BASIC (note one of
the Hewlett-Packard machines described on p. |7).
The characters in the upper-level program (APL or
BASIC), stepped through by the upper-level program
follower, cause the lower-level program follower to
carry out the operations of the language.

Second, the machine costs less to make than an
ordinary computer. The reason is that the archi-
tecture of ordinary computers is designed now (at
last) for groﬁrammer convenience. Thus a machine
like the PDP-1T, which in principle does nothing
any other computer doesn't do, is still more desir-
able than most, because its instructions are so
well designed. It is clear and sensible to the pro-
grammer, with the result that programming it takes
less time and costs less money.

Microprocessors reverse this trend. The lower-
level structure of registers and instructions can be
anything that is convenient to manufacture, whether
Or not programmers like it. Low manufacturing cost
is one of the main design criteria.

The purpose of microprocessors, you see, is
generally to be hidden in other equipment and do
some simple thing over and over; not to have their
programs changed around all the time as on an ordi-
nary computer.

There are exceptions, computers which have a
second level down where you can put microprograms;
and these are called, sensibly enough, microprogram-
mable computers. They are bought and set up with
Tegular computer accessories, plus facilities to
change the microprograms. Thus they cost a lot nore;
but oh, they do so much more for you. You can design
your own computer-- i.e., its instruction-set-- and
then create it, with a microprogram. (See the Stan-
dard Tomputer and the Meta-4, nearby.)

hakbwage -

equipment itself.

SOFT U € :

computer programs

FIRMWARE ;

underprograms for
microprocessors. (Also
called Microprograms.

d Underware.
a computer which has, Should be called Unde)

under the binary language

you want to use,

another binary language

that's cheaper to wire up.

dux

ORDINARY
XreRnnL
Deviees

Uhoroad

Thee

TWO LEVELS, TWO SPEEDS

The trick that makes this all work-- whether
for the hidden-away type or the computer type of
microprocessor-- is that the lower level has a much
faster memory than the upper level. This means
that an upper-level word can be taken, and looked
up in the lower level, and all the lower-level steps
carried out, very fast compared to the upper-level
memory. Many such machines, for instance, have
lower-level speeds in the nanoseconds (billionths
of a second), while the upper-level Speeds are mere-
ly in the microseconds (millionths of a second).

A last point. One of the most important char-
acteristics of an ordinary computer is its word
length, that is, the number of binary positions in
a usual chunk of its information.

D E A AZEre]

POP-g wory (12 biks: see p. 49)

7Tt

TR S R RRK
Codel Date o uorf (60 b Jsenpy)

But since microprocessors have two separate levels,
they often have two separate word lengths as well:
the upper-level and the lower-level.

A wine
MICLOPROCEH DR

AePe wide

miccoprocescors fend

roprocesovs Tend fo have,

NG o rrow mic
“prckod” mshuctions, wlheve The meany,
¥ dondoat Aoty sud sectons P ré ’Lav(ipeedic bify

nd esH Y coufeoff.

depeds gou fie resf ‘!’"'6"‘4 e
Microprocessors are usually sold in quantity,

to people who are building super-cash-registers or

pinball machines or the like. So their memories

come in many sizes and speeds, to be tailored to

an application. You should know the Jdifferences

between--

ROM-- Read-Only Memory. Contents can't be
changed, costs less than changeable (at
any given speed).

RAM-- Rapid-Access Memory. Also called
read-write memory. Same as core MenoTYy !
May have its contents changed. NOTL: if
you simulate some computer with a micro-
program, its simulated 'registers’ arc
usually locations in the lower-level RAM.,

RMM-- Read-Mostly Memory. You can get out its
contents fast, but change them only very
slowly.

(The lower-level memory is sometimes called
program memory" and the upper-level memory is often
called "data memory, but this is a confusion result-
ing from certain typical applications of the devices,
rather than their inherent nature. You can have
programs at both levels.)

BIBLIOGRAPIlY
Raymond M. ilolt and Manuel R. Lezvl\as, “Current
];g;g;‘orc‘c:m[;:;e;AI,\rélS\};;?ture. Computer
Summarizes nine teeny machines now

on the market (some 1-level). Good bib-
liography also.

Some miCroPROGRAMMARLE COMPUTERS *

Standard Computer 18 bits 36 bits Big § Expensive.
Meta 4 16 bits 16 bits Up to 32 hard-
90 or 35 nsec 900 nsec ware registers.,
Burroughs 1700 16 bits 24 bits Comes with cassette
60 nsec 666 nsec holding various
‘emulators——
Lockheed SUE 36 bits 16 bits 650 stripped,
Hewlett-Packard 2100 ? 16 bits Already micropro-
grammed to be like
other HP computers
-- but there's
space for yours,
as well, $7500.
Microdata 3200 32 bits 16 bits $8000 up ($10,000
135 nsec for model 32/S,
stack-oriented).
Varian 73 64 bits 16 bits $15,000 to $100,000
165 nsec 660 nsec {heavy upgrade of

(190 read-write) Varian 620).
? 167

IBM 360 model 25

Prime 200 64 bits 16 bits
160 nsec 750 nsec

Interdata 85 32 bits 16 bits $23,000
160 nsec 320 nsec

Some MicropRocEsORs TO BE 81 LT INTO HNES. K
(ma;f'fﬂr consofes, efe., for 4&4:15 ,U)

Intel MCS-8 8 to 24 bits 8 bits Stack-oriented (now
900 nsec 12.5 usec faster model).
Intel MCS-4 8 or 16 bits 4 bits Basic chip $60.
900 nsec 10.8 usec
SYS 500 (Weird but interesting wide microprocessor-- circulates
among many separate activites, rather than branching.)
Microdata 16 bits 8 bits
Micro 800 220 nsec 1.1 usec
Micro 1600 200 nsec 1 usec
(read-write)
AES-80 (Auto. Electric 12 bits 8 bits $950 w/0 memory
Systems, Montreal) 240 nsec 240 nsec or 1 usec

National Semiconductor $1380 stripped
IMP-16C (8 1/2 x 11-- odd size for computer, convenient for notebook.)

DEC PDP-16M 8 bits 16 bits $2000. (Compatible
w. PDP-11 Unibus.)
Atron 601 16 bits 16 bits
260 nsec 1 usec

#(abbreviations: nsec (nanoseconds, or billionths);
usec (microseconds, millionths; usual weird
abbreviation).)

The history books ten years from now, if any,
will note that the first computer-on-a-chip was pro-
duced by Intel. Intel, an astutely managed company, -
chose to make a microprocessor that would be suited
to placement in others' machines at low cost. This
means that if you make a fancy bulldozer or bake-
oven, and want it to have somc form of intricate
pre-planned behavior, you'll put "the Intel chip"
in it,

Actually the Intel chip is a number of separate
chips, which start low in cost-- a fairly complete
set can be had for under $500-- and can be assembled
into a full computer, (Indeed, various firms do of-
fer complete computers built out of Intel chips. In-
cluding one the size of an Orea cookie, guaranteed
for 25 years.)

The original Intel chips are the MCS-4 and
MCS-8, viz.:

Upper level Lower level

MCS-4 4 bits 8 or 16 bits
(10.8 (900 nanoseconds)
microseconds)
MCS-8 8 bits 8 to 24 bits

(1z.5 (900 nanoseconds)
microseconds)

While these individual chips cost under a hundred
doliars each, memories and other necessary sections
cost extra. For people who want to develop systems
around these chips, Intel has cannily prepared a num-
ber of setups. If you want to go 4-bit, you get the
"Intellec 4," $2200, which also needs a Teletype.
This gives you various display lights and debugging
features. Meanwhile, you can assemble and simulate
on simulation programs offered on national time-shar-
ing. 1If you want to go 8-bit, you get the "Intellec
8" for $2400 (also without Teletype), and benefit ad-
ditionally from the fact that you can prepare the
underware in PL/I, and compile it on national time-
sharing. -

Crafty and clever Intel, which has captured much
of the overall market already, has now brought out
much faster versions of these chips. Rah.

g Mfﬁs"{'

A computer wittily called the Meta 4 (heh heh)
is a fairly neat machine made by Digital Scientific
Corp., 11455 Sorrento Valley Rd., San Diego CA 92121.

l.ower mcmory: 16 bits, 90 nanoseconds (or 35
nanoseconds, programmed by a card (on
which you darken the squares.)

Upper memory: 16 bits, 900 nanoseconds.

What this is is a very high-power minicomputer:
it can be turned into a lookalike for any other 16-bit
minicomputer. For instance, they can sell™ it to you
with an imitative microprogram that turns it effec-
tively into an IBM 1130. From a marketing point of
view, this effectively means a firm owning an IBM 1130
can replace it with a Meta 4 which runs the same pro-
grams, saves money and gives you in addition the bot-
ton-level features of a far more powerful computer.
(Such an under-ievel program that makes one machine
effectively imitate another cowputer is called an
emulator.) This capacity to cmulate other computers
{s the "metaphor” alluded to in the machine's name.

Y ooieEh) SUE,

The Lockheed SUE ("System User-Engineered
Computer") is a very interesting and desirable
machine. The central processing unit costs a little
over six hundred and forty dollars! (That's without
memory, power supply or card cage.) It uses a
Grand Bus system of interconnection (see p. 42).

It's & microprocessor. The lower-level cycle
time is 50 nanoseconds, so it can be programmed to
imitate any microsecond mini.

One nice thing is that you can put together
several cpu's and different memories—- core,

i and ROM-- ing with switches
which cpus have what priorities in what memories,
as well as interrupts, etc. Darn nice-- especially
considering the upper-level instruction-set.

The microprogram it comes with makes the
Lockheed SUE into a sort of copy (??) of the PDP-11,
i ing its eight regi and simjlar add
modes (see p.Y7).

Was the name SUE actually Lockheed's
impudent challenge to DEC? DEC did sue, but no
outcome has been publicized.

e STINDATD (SWRUTER

A microprogrammable biggie has been available
for some time, It's a 36-bit computer manufactured
by Standard Computer Corporation, 1411 W, Olympic
Boulevard, Los Angeles, CA 90015.

This computer is a serious machine, in the
many-hundred- thousand-dollar class, which can be
set up to mimic any other 36-bit machine. It has
been sold in two versions: one a pure FORTRAN ma-
chine (that's right, its upper language is pure
Fortran!) and a lookalike for the IBM 7094. Lower-
level word length is 18 bits,

(An interesting puzzle is why this outfit has
not gotten together with Lincoln Laboratories. Lin-
coln Laboratories, outside Boston, has a 36-bit ex-
perinental machine called the TX-2 which has been
used for computer graphics, such as Sutherland's
SKETCHPAD system (see p. HMZ3) and Baecker's GENE-
SYS (see p.YM 25). Now, pfesumably Lincoln Labs,
like most other research outfits, is hurting for
money., Why couldn't they make an arrangement for
Standard to sell its machine with a TX-2 emulator,
thus making.available such programs as Sketchpad
(which has never been equalled) to a wider public?

AWRNCED PROGRANS

. In the early throes of computer enthusiasm,
it is easy to suppose that anything can be done
by computer-- that is, anything involving the
chewing or diddling of information. This is
decidedly not so,

For instance, it is easy enough, and often
practical, to have a computer do something a few
million times. But it is almost never practical
to Rave a computer do something a trillion times.
Why? Well, let's say (for the sake of simpli-
city) that a certain program loop takes 1/1000
of a second. To do it a thousand times, then,
-would take one second, and to do it a million
times would take a thousand seconds, or about
seventeen minutes.. But to do it a trillion times,
now, would mean doing it 17,000,000 minutes, or
over thirty years.

Now, you will note that even if you speed up
that loop to 1/1,000,000 of a second, a trillion
Tepetitions will take almost twelve days, which
is obviously going to need some justifying, even
assuming that it is otherwise feasible.

(For problems of this type people begin
thinking about building special hardware, any-
way. It will be noted, for instance, that the
PDP-16-- see p.577-- lets you compile your own
special equipment for problems that need eter-
nal repetitiops.

COMBINATORIAL EXPLOSIONS

One kind of thing that's too much to do
is generally called a combinatorial explosion--
that is, a problem that "explodes™ into too
many things to do. For instance, consider the
game of chess. Just because you can write a
program to look ahead at all the possible out-
comes of, say, tic-tac-toe, that doesn't mean
you can consider all the possibilities of chess.
To look at '"all” the possibilities just a few
moves ahead dnvolves you in trillions of
calculations. Remember about trillioms? And
it turns out that there are a lot of problems
like that.

METHODS FOR DOING THINGS 7

There are really no clear bounds
on “what computers can do."

The problem is always to think up
methods for doing things by computer.
{Also called algorithms.)

Basically what can be dome by
computer is what can be done on a
tabletop with slips of paper-- compar-
ing, copying, sorting, marking, doing
arithmetic-- and handing slips of paper
out to users.

So the question should never be,
"How would you do that by computer?”
-~ but "Can you think of a method
for accomplishing that?" The "computer”
is really irrelevant, for it has no
nature and merely twiddles information

l on demand.

.Then there is the problem of "Turing im-
possibility." Turing was a mathematician who
discovered that some things can be done se-
quentially in a finite amount of time, and
some things can't, such as proving certain
types of matRematical thecrem. In other words,
anything that has to do things in sequence--
whether a computer or a mind of God, if zny--
cannot possibly know anything which is not
Turing-computable. Another important limita-
tion.

On a more practical level, though, there
are just lots of things which nobody has figur-
ed out how to do in any feasihle way, or are
just now figuring out different systematic ways
of doing. (For a favorite such area of mine,
compare the different computer half-tone image
synthesis systems described on pp. DM 32 to
oM 39)

Thus you see that figgering out ways of
doing stuff is still ome o§ the principal as-
pects of the computer field. (Whole journals
are devoted to it, such as CACM, JACM and so on.)

But then of course, every few years there
comes a new movement in the field that bodes to
make us start all over.

One such trend is called structured prog-
ramming, being promulgated by a Dutch research-
er named Dijkstra, among others. The idea of
structured programming is to Testrict computing
languages in certain ways and "eliminate the
GO TO," i.e., no longer have jumps to labeled
places in programs. By dividing computer prog-
rams up only in certain ways, goes this school
of thought, the programs can perhaps be proven
workable, in the mathematical sense, ratEer
than just demonstrated to work, as they are now--
a notoriously error-prone situation. If the
Dijkstra school is correct, we may have to
start all over again with a new bunch of prog-
ramming languages.

These remarks give you the flavor cof some
restrictions and lines of development. The rest
of this page is devoted to The Great Software
Pfoblem-- the Operating System.

OPERATING-
SNSTEW/ 360

or 08/360, or 0S

We have no space here to discuss OS,
the operating system of the IBM 360 and 370,
which is just as well: it is a notoriously
heavy-handed system, elaborated with what
some would call devastating messiness. Kinds
of convenience taken for granted by users of
such computer systems as the Burroughs 5000,
the PDP-10, DTSS and others aren't there.

The programmer has to concern himself
with intricacies having names like ACONs,
VCONs, TCBs, ECBs, and the complications of
JCL. (While these other systems may have
equivalent complications, the programmer
need not mess with them to create efficient
programs, as the 360 demands.) The pro-
grammer must even set aside the previous
programmer's information in "SAVE AREAS,"
which is like a restaurant guest having to
clear the dirty dishes on sitting down--
and return them when he leaves. Several of
the 360's sixteen general registers are con-
fiscated. Time-sharing requires its own
JCL-type language. And so on.

IBM says its forthcoming operating sys-
tem, 0S/VS2-2, will be better.
BIBLIOGRAPHY

A.L. Scherr, "The Design of IBM 0S/VS2 Re-
lease 2." Proc.NCC 73, 387-394.

CRERRING S{STH
EVIE-SHERNG-

Basically, an operating system is a
program that supervises all the other pro-
grams in a computer. For this reason it is
also called a supervisor or a monitor.
Because the operating system is supposed to
be in charge, many computers now offer spe-
cial wired-in instructions that only the
operating system can use. This prevents

“First
Generation™
Time-Sharing

“Uecond
Generation’ CTSS ~

SOME THPORTANT TiMe- SHRRING:- SYSTEMS (very wncomplede)

Fredkin, McCarthy
& Licklider, 1961
{on a PDP-1)

Fano & Corbatd,

rg- (Compatible PDP-6
Sharing Time-Sharing System Time-Sharing

JOSS (one-language)
John [von Neumann]'s
Own Supervisory System,
N Rand Corp., late fifties
(originally JOHNNIAC 2.

computer, later PDR=6)

other programs from taking complete control ~~ meaning
of the machine. mixable languages.) GENIE
Project MAC, MIT, Project,
Operating systems come in all sizes. ca. 1963. Stanford
The bigger ones take up a lot of computer (SDS 940)
time because they have to do a lot. The
smallest kind, which are really kind of
different, are just to help a single pro- thivd 5
grammer move quickly between his basic frd)
programs. (A typical such system is DEC's fe_"emf“"} MULTICS IBM's TSS. -
DOS, or Disk Operating System, which you Time-Sharing. (MIT & Splat. (Abandoned.)

can get with the PDP-11.) This systen is

Honeywell.) , (360 model 67)" >
really a kind of butler that keeps track of 7.0

Single-language (GE-- now .

where your basic programs are stored on disk systems Honeywell-- -
and brings them 'in for you quickly. are row 645.) 1BM's TOPS,
commonplace . CP/67. TENEX
A step up is the Batch Monitor, or op- fLate sixties.) very good. {PDP-10)

(Not too widely used,

erating system set up for Batch Processing thoughy (360 model 67)
ough . mode

(see p.B3~mit}. In batch processing, pro-
grams go t?\rough the computer as if on a
conveyer belt, one at a time (or in some
systems several at a time). The operating
system shepherds them.

1BM's 0S/VS2-2.
(Big IBM 370s.)
We're waiting.

Batch processing is used when programs
don't need any interaction with human users,
(Or, and this is more common, when human
users want time-sharing but can't get it;

see below.) A 1 Togramming operating
system is one that allows several different
prograns (or conveyor-belt sequences of
batch programs) to operate at one time.
(This is how most IBM 360s are used.)

BIBLIOGRAPHY

M.V. Wilkes, Time-Sharing Computer Systens,
MacDonald/American ElSevier Publishing Co.

All About Timesharing Service Companies.
Datapro Research (1 Corporate Center,
Moorestown, NJ 08057), $10,

SYSTEMS PEOPLE
are the folks who bring you the computer.

AN
That is, they're the ones who try to
keep the operating system working. And “
make the changes it needs to adapt to new
equipment and working rules and schedules
and software. And change the parts through
which mischievous users crash the system.

DTSS is the Dartmouth Time-Sharing
System, and let it be an example to us all.

It was created by Kemeny and Kurtz,
who created the BASIC language to be used
on it (see p. If).

Their computer arrived in fall '63.
Their time-sharing system went into opera-
tion in spring '64, programmed mostly b
Darunouth students, and has grown ani im-
proved continGously since then. On that

basis: programmed by students.

Systems people often look like dirty
rats to users of computer systems. To
each other they often look like harried,
overvorked, unsung heroes, their fingers
(and whatever else) in the dike, trying
to hold back the tide of Disorder.

Systems people deserve more thanks
than they get. It's great.
Thank you, systems people. The Dartmouth computer philosophy--
i.e., the idea carried through by John
Kemeny and Tom Kurtz--was that a computer
is like a library: its services shou be

ree to a in a community, paid for

Then there is time-sharing. through some general fund.

Time-sharing means the sinultaneous use
of one computer by several different users
at once. It's basically a complex form of
multiprogramming.

Students and faculty at Dartmouth
use it free. {Unless they have grants.)
You can use it too, if you pay.

The result: cverybody at Dartmouth
uses the computer. It's always running,
(ahem) six days a week. There are almost
two hundred terminals around the campus;
peak afternoon usage is about a hundred
and fifty, Freshmen learn BASIC first
thing, after which the computer is a
standing facility, to be used in courses
in music, sociology, literature, history,
engineering or whatever; for independent
research; or just for fun and games and
showing off to visitors.

In principle this is like a lazy susan.
The central computer works on one user's pro-
gram for a while, then on another's... until
it is back to the first user.

There are basically two kinds of time-
sharing: time-sharing where you can only use
certain facilities or languages, and time-
sharing where you can use all the facilities
of the computer (including programming in the
computer's assembly language).

Examples of restricted time-sharing are
the various minicomputer systems that are
available which time-share the BASIC language.
(Nova and PDP-11 and llewlett-Packard, for
instance.)

The entire Dartmouth system is built
for simplicity and clarity, with explana-
tions of all the facilities available at
terminals. (The command explain JGK caus-
es the terminal to type out a picture of
Some examples of unrestricted time- Kemeny.)
sharing are the PDP-10 (see p. 4o0), Dart-
mouth's DTSS, Honeywell's MULTICS, IBM's TSO,
and General Electric's MARK TII.

Many fuddy-duddies insist that computer
usage should be billed, as it is on most
college campuses. That is essentially the
Bigger is not necessarily better. For Calvinist view. But what if we treated li-
instance, there are time-shared versions of braries like that? It would probably cost
BASIC that run on big IBM computers. Illow- $10 just to borrow any book. The peint is
ever, it may very well be that big IBM in- that It we believe that certain conditions
stallations can save money by eliminating are a social good, then we should be flex-
this function and buying instead a small ible about how to implement them. (See Arthur
Hewlett-Packard minicomputer to run their W. Luehrmann and John M. Nevison, “"Computer
BASIC on, thereby supplying BASIC to more Use under a Free-Access Policy, Science, 31
users at less cost and freeing the 360 for May 74, 957-961. This article continues this
whatever it is [BM systems do better. line of argument and further describes the
Dartmouth billing system.)

Restricted time-sharing, with only one
or a few languages offered, 1s much easier to

Anyway, Dartmouth will sell you its time-
provide for than full time-sharing.

sharing system for about $7500 a month (and
you'll need a computer setup that begins at
$17,500 a month). That'll run S0 terminals.
A bigger setup will cost more. But that gets
you Fortran, COBOL, SNOBOL, etc., the best
BASIC in the whole world, games, financial
systems, and myriad other programs they've
built at Dartmouth. Furthermore, Mr. Adminis-

Full time-sharing is always shared with
batch. In other words, the computer, darting
among users, still finds some time to devote
to the batch stream.

Time-sharing is self-limiting. That is,

(GE 235, later 3

System now may be
considered
Third Generation.

the more users are signed onto a time-sharing
system at a given moment, the more slowly the
system responds to all of them.

Operating systems are big and hard to
rogram. They take a lot of the computer's
time: for instance, Dartmouth’s time-sharing
operating system, taking as much as 23% of
the computer's time, is considered efficient.

The importance of time-sharing is not in
terms of "raw" efficiency, that is, the cost
of each million operations, but in terms of
human efficiency, the ability of each user to
get so much more out of the computer by using
interactive programs and languages.

OPERATING SYSTEMS TRICKERY

Swapping means transferring one user's
program out of core memory in order to move
in somebody else's program. This can happen
very rapidly, and even when it's done to you
every turn, your terminal may seem to respond
as though you are in continuous possession of
the entire computer

Pagin; is one of the Great Abstruse
Problems of modern operating systems. The
problem is this: you've always got fast ex-
pensive memory and cheap slow memory. How
can the operating system store most of your
program in cheap slow memory and still predict
which parts you'll need soon enough to get
them in there for you? In the hotter systems,
indeed, the operating system tries to predict
what's most important and move it to a fast
little memory called a cache. This area is
so bizarre and complicated I prefer not to
think about it. '"Minis for me,” says Mr.
Natural,

trator, it means the system will be available
to users with a minimum of complication and
bother.

A number of companies have bought. In-
cluding the U.S. Naval Academy at Annapolis,
which offers Dartmouth-style computing to
its midshipmen.

Connect charge is $2 to $9 an hour
depending on your terminal
peed, plus processing charges.
Contact: DTSS, INC., Hanover NH
03755. (Several commercial
firms also offer DTSS to users,
including Computer Sharing Ser-
vices, Inc. Denver; Grumman Data
Systems, Woodbury, NY; PolyCom
Systems Ltd., Toronto.)

The most enjoyable session at the 1974 National
Computer Conference was the Nostalgia session on the
Dartmouth System, DTSS. The Old Hands were there--
guys who as kids worked on the original time-sharing
system, and have now become grownups of one sort or
another.

An alarming statement was made at that session
by Jerome B. Wiener, who said he had been the liaison
man between the Dartmouth effort and the computer
manufacturer (not IBM). He stated that he had been
ordered by his company to stop the Dartmouth "experi-
ment” any way he could, or lose his job in three
wonths. He did no such thing, and (he said) after
being fired continued to help the Dartmouth effort,
holding weekend meetings with others from that com=
pany in his home. He deserves the Frances 0. Kelsey
we-do—our-real-job medal.

Y5

Time-sharing prices are a mix
of lotsa stuff:

1. Connect time. This

you pay by the hour.
Good prices: $2 (DTSS),
$1,50 (Moamouth County
[NJ] Community College
-- but they have no
concentrators and want
no beginners}.

"Core charges"-- essen-
tially the price of
processing itself; de-
pends on amount of
number crunching.
PDP-10 bills this in
kilocore-seconds, i.e.,
How many thousand words
of core memory your pro-
gram really turns out
to need, for how many
seconds.

Storage, which costs much.
Example: 1000 characters
for a month for a buck.
(Typical.) That adds up
fast. You might do better
with a cassette memory on
your terminal, such as the
Techtran (see p.[f<&f3).

Five bucks an hour overall is a
pretty good rate,

Kemeny & Kurtz'
pTSS
{Dartmouth Time-
Sharing System)
Started as single-
language system
with BASIC,
grew & grew

GE 635-- now made
by Honeywell.}

Note that time-sharing usually
costs less in non-business hours
-- but some exceptions charge more.

———

WHERE TO GET IT

No way can we here get into the prose_and
cons (both senses) of the myriad time-sharing
services that are available. An excellent
summary of fifty-six different time-sharing
services (variously using computers by lloney-
well, IBM, DEC, Univac, CDC, Xerox and
Burroughs) appeared in the February, }973
Computer Decisions ("Piecing Out the Timeshar-
Ing Puzzle™ by John R. Hillegass, pp. 24-32).
This summarizes information available from
Datapro Research Corp., Moorestown, NJ. The
article cautions against the potential high
cost of time-sharing services, and urges you
to get all the advice you can before commit-
ting to a time-sharing service.

——+

MULTCS |

MULTICS was announced in 1965 as the
Time-Sharing System of All Time, to be
created jointly by MIT, General Electric
and Bell Labs.

It took a lot longer to get going
than they expected-- I have a 1968 (?}
button that says, YOU NEVER OUTGROW YOUR
NEUD FOR MULTICS-- but now it's available
from Hloncywell. People say it's the
areatest, all right-- its fascinating
facilities include the ability to execute
parts of other people's programs, if you
have permission-- but it's also said to be
awfully expensive.

Interestingly, the MULTICS operating
system is largely programmed in the PL/I
language (see p. 31).

Contact: lloneywell Information
Systems, 200 Smith Street,
MS 061, Waltham, Mass. 02154.

'.ﬁi‘ u;m m::g .M_PVK m
RoVNYD THE WORMD:
GEt's

Some time-sharing svstems arc local, others
have 'concentrators™ allowing users in other
cities to log into them with local telephone
calls.

Perhaps the most far-reaching time-sharing
system, though, is General Electric's MARK III,
with concentrators in many of the major cities
of the world (mostly Europe). The main com-
puter is in Ohio, but the overall system may be
thought of as an octopus around the globe. Be-
sides hundreds of cities in the USA, The GE
system offers local access in Australia, Austria,
Belgium, Canada, Denmark, Finland, France,
Italy, Japan, Netherlands, Norway, Puerto Rico,
Sweden, Switzerland, United Kingdom and West
Germany.

What this basically means is that if a
company has offices in these places, it can
do its internal communication through General
Electric's computer system.

This presents obvious merits and difficul-
ties, whicn there is no room to discuss here.
The service is said to be expensive.

They also offer a toll-free number for
program consultation.

Contact:

General Electric Informa-
tion Services
Business Division,
401 North Washington §t.,
Rockville, Md. 20850.

Y$O

IBM's "TSQ", for Time-Shared Operating
System, is an odd sort of time-sharing they
have come up with for the 370.

It is a sort of interactive batch pro-
gramming., That is, it allows the user at a
terminal to communicate with programs running
in batch mode.

While this is a form of true time-sharing,
{though its detractors tend to compare it with
what they call "true" time-sharing, such as
that on the PDP-10), it has a number of draw-
backs.

For instance, on the model 158, a fair-
ly large machine (ca. $50,000 a month-- see
p. D58), TSO normally allows only twenty
users.

The bad feature of TSO most often men-
tioned is its slow response time. That is,
response may be sometimes good, sometimes
execrable.

IBM is urging its fans to believe that
its next operating system, called 0S/VS2-2,
will be much better.

46

THe HEARTS 4ND MINDS
OF COMPUTER PEOPLE

Computer people are a mystery to others,
who see them as somewhat frightening, somewhat
ridiculous. Their concerns seem so peculiar,
their hours so bizarre, their language so in-
comprehensible.

Computer people may best be thought of
as a new ethnic group, very much unto them-
selves. Now, it is very hard to characterize
ethnic groups in words, and certain to give
offense, but if I had to choose ane word for
them it would be elfin., We are like those
little people down among the mushrooms, skit-
tering around completely preoccupied with
unfathomable concerns and seemingly indif-
ferent to normal humanity. In the moonlight
(i.e., pretty late, with snacks around the
equipment) you may hear our music.

Most importantly, the first rule in deal-
ing with leprechauns applies ex hypothesi to
computer people: when one promises to do you
a magical favor, keep your eyes fixed on him
unti% he has delivVered. T you Will get what
you deserve. Programmers' promises are notor-
iously unkept.

But the dippy glories of this world, the
earnestness and whimsy, are something else.
A real computer freak, if you ask him for a
program to print calendars, will write a pro-
gram that gives you your choice of Gregorian,
Julian, 0ld Russian and French Revolutionary,
in either small reference printouts or big
ones you can write in.

Computer people have many ordinary traits
that show up in extraordinary ways-- loyalty,
pride, temper, vengefulness and so on. They
have particular qualities, as well, 6f dogged-
ness and constrained fantasy that enable them
to produce in their work. (Once at lunch I
asked a tablefull of programmers what plane
figures they could get out of one cut through
a cube., I got about three times as many ans-
wers .as I thought there were.)

Unfortunately there is no room or time
to go on about all these things-- see Biblio-
graphy-- but in this particular area of fan-
tasy and emotion I have observed some interes-
ting things.

One common trait of our times-- the tech-
nique of obscuring oneself-- may be more com-
mon among computer people than others (see
"The Myth of the Machine,"” p. 9 , and also
"Cybercrud,” p. §). Perhaps a certain dis-
gruntlement with the world of people fuses
with fascination for (and envy of?) machines.
Anyway, many of us who have gotten along badly
with people find here a realm of abstractions
to invent and choreograph, privately and with
continuing control. A strange house for the
emotions, this, Like Hegel, who became most
eloquent and ardent when he was lecturing at
his most theoretical, it is interesting to be
among computer freaks boisterously explaining
the cross-tangled ramifications of some system
they have seen or would like to build.

(A syndrome to ponder, I have seen it
more than once: the technical personr who, with
someone he cares about, cannot stop talking
about his ideas for a project. A poignant
type of Freudian displacement.)

A sad aspect of this, incidentally, is by
no means obvious. This is that the same com-
puter folks who chatter eloquently about sys-
tems that fascinate them tend to fall dark and
silent while sofieone else is expounding his own
fascinations. You would expect that the person
with effulgent technical enthusiasms would
really click with kindred spirits. In my ex-
perience this only happens briefly: hostili-
ties and digagreements boil out of nowhere to
cut the good mood. My only conclusion is that
the same spirit that originally drives us mut-
tering into the clockwork feels threatened
when others start monkeying with what has been
controlled and private fantasy.

This can be summed up as follows: NOBODY
WANTS TO HEAR ABOUT ANOTHER GUY'S SYSTEM.
Here as elsewhere, things fuse to block human
communication: envy, dislike of being domina-
ted, refusal to relate emotionally, and what-
ever else. Whatever computer people hear
about, it seems they immediately try to top.

Which is not to say that computer pecple

Compurer Forpeun s

Practice saying them loudly and firmly to
yourself. That way you won't freeze
when they're pulled on you.

THAT'S NOT HOW YOU DO IT
THAT'S NOT HOW YOU USE COMPUTERS
THAT'S NOT WHAT YOU DO WITH COMPUTERS
THAT'S NOT HOW IT'S DONE
THAT'S NOT PRACTICAL
HOW MUCH DO YOU KNOW ABOUT COMPUTERS?
WITH YOUR BACKGROUND,
YOU COULDN'T UNDERSTAND IT
LET'S CALL IN SOMEONE WHO KNOWS THIS
APPLICATION (generally a shill)
IT ISN'T DONE
(you know the answer to that one)
and the one I've been waiting tb hear,
IF GOD HAD INTENDED COMPUTERS TO BE USED
THAT WAY, HE WOULD HAVE DESIGNED
THEM DIFFERENTLY.

Unfortunately there is no room here to
coach you on how to reply to all these. Be
assured that there is always a reply. The
brute-force brazen ccmeEacg, equally dirty,
is just to say something like

DIDN'T YOU SEE THE LAST JOINT PROCEEDINGS?

or
OH YEAH? WHAT ABOUT THE x WORK
USING A y?

(where x is anyplace on the map on p. §,
and y is any current computer, such as a
PDP-10.)

%//// N~ \

\

... programmers, in my experience,
tend to be painstaking, logical,
inhibited, cautious, restrained,

defensive, methodical, and ritualistic.

Ken Knowlton,
"Collaborations with Artists--

A Programmer's Reflections,"

in Nake & Rosenfeld (eds.),
Graphic Languages

(North-Holland Pub. Co.), p. 399.

USEFUL, AND POSSIBLY EMBARRASSING QUESTIONS

If the Computer Priests start to pick on you,
here are some helpful phrases that will give you
strength.

I do not want to give the impression that the
Guardians of the Machine are always bad guys.
Nevertheless, sad to relate, they are not always
good guys. Like everyone out to bolster his position,
including the plumber and the electrician, the computer-
man has learned how easy it is to intimidate the layman.

Now, these people are often right. But if
you have reason to question the way things are done--
whether you're a member of the same corporation,

a consumer advocate or whatever-- you are probably
entitled to straight answers that will help settle the
matter honestly, without putdowns. Any honest
man will agree.

Now, these helpful questions, honestly answered,
may elicit long mysterious answers. Be patient
and confident. Write down what's said and sit down
with the glossary in this book until you understand
the answer. Then you can ask more questions.

I am not inviting the reader to make trouble
flippantly. Iam suggesting that many people have
a right to know which has not been exercised, and
there may be some discomfort at first.

HOW DOES IT WORK?
(This question may have to be backed
up as follows: "There are no computer systems
whose workings cannot be clearly described
to someone who understands the basics. |
INSIST THAT YOU MAKE A SINCERE ATTEMPT.")
WHY DO YOU CLAIM IT HAS TC BE THIS WAY?

"For me it always comes down to a personal
challenge: not just to create a program that meets
the specifications, but to do it in a way that I
find aesthetically pleasing."”

Robert H. Jones IV,
a heavy programmer at Chrysler

PROGRAN, NEGOY#TioN

A very important kind of discussion takes
place between people who want computer programs,
but can't write them, and people who can write
them, but don't want to. Or, that is, who don't
want to get caught having to do a lot of unneces-
sary work if it could be done more simply.

Program negotiation, then, is where the
“customer”—- he may actually be the boss-- says,
"I want a program that will do so-and-so,” and
the programmer says, "I'd rather do it this way."

In a series of requests and counter-offers
the customer explains what he wants and the pro-
grammer explains why he would rather do it a dif-
ferent way. It is essential for both sides to
make themselves completely clear. Often the cus—
tomer thinks he wants one thing but would be
quite satisfied with another that is much easier
to program. Often the programmer can make help-
ful suggestions of better ways to do it that will
be easier for him.

Very bad things can happen if program nego-
tiation is not done carefully and honestly enough.
The programmer can misunderstand and create some-
thing that was not wanted. Or the customer can
carelessly misstate himself and ask for the wrong
thing. Or worst of all-- the programmer can de=
liberately mishear and do something different,
saying, "There, that's what you wanted,” as he
hands over something that isn't what was really
asked for. And the poor customer may even believe
it (see "Cybercrud," p. 8).

Program negotiation should be more widely
acknowledged as a difficult and painful business.
It is exhausting and fraught with stress; people
(on both sides) get all kinds of psychosomatic
symptoms (like abdominal pains, tics and chills).
The fact that people's careers often depend on
the outcome makes the atmosphere worse, rather
than fostering the thorough and sympathetic coop-
eration which is essentjal.

If there is one thing that laymen in business
should be taught about computing, this is it.

“1 CANT BEAR HEAT,” REMARKED LANGWIDERE

THE MEETING OF THE MINDS

The Customer,

are mere clockwork lemons or Bettelheimian Naive Advocate The “Expert"
robot-children. But the tendencies are there. (SPEAK MORE SLOWLY , PLEASE .} or Chump
WHAT IS THE DATA STRUCTURE? — -
COULD YOU EXPLAIN THAT IN TERMS OF THE DATA \
STRUCTURE? I don't see why What you've gotta
BIBLIOGRAPHY WHO DESIGNED THIS DATA STRUCTURE? since it's a computer... understand is that there
2 These are not details are problems involved...
Gerald M, Weinberg, The Psychology of Computer And can [talk to him? that concern me... Tt can't be that
Programming. Van ! N—H_ﬁlostran eiﬁﬁom_L. WHAT IS THE ALGORITHM?? These are just way...
. . WHO IS THE PROGRAMMER? technical issues... Leave it to me, it'll
. Systematic treatment in a related And can | talk to him? I mean a computer be just what you want...
velin, WHY DO WE HAVE TO USE A CANNED PROGRAM FOR can do all these things,
THIS? can't it?
P A— . WHY IS THE INPUT LANGUAGE SO COMPLICATED?
/ WHY DO WE NEED CARDS? WHY CAN'T PEOPLE TYPE Comeuppance: the customer will get what he deserves.
This case is so classic it's almost a Punch IN THEIR OWN INPUT? Moral: if you want something, you'd better damn well
and Judy show. : negotiate it at the detailed level.

WHY NOT HAVE A SIMPLE-MINDED FRONT END THAT

One of the nastiest people I have ever met LETS USERS CONTROL IT THEMSELVES?
was the head of security for a big-computer in- WHY HAVE FORMS TO FILL OUT? WHY NOT HAVE
stallation. Several people agree with me that A DIALOGUE FRONT-END ON A MINI?
he delights in telling people they can't do WHY CAN'T IT BE ON-LINE? Aud on CET Biwansds (se2 pp. -7
specific things on the computer, merely for the WHY DOES IT HAVE TO BE THAT BRAND OF COMPUTER?
sake of restricting them. WHY NOT GET A SYSTEM WITH LESS OVERHEAD?
WHY SHOULD ALL COMPUTER OPERATIONS BE CENTRALIZED?
DON'T THEY GET IN EACH OTHER'S WAY?
WHY DOES IT ALL HAVE TO BE ON ONE COMPUTER?

Anyway, at this same installation there was
a programmer, let's call him A, who disliked au-
thority, and disliked this director of security,

NOXXX 00 x
X000 x O xo

let's call him B, with a moody passion. o WHY NOT PUT PART OF IT ON A DEDICATED MINI?
o WHY CAN'T WE DO THIS PARTICULAR THING ALL
B spent much of his time intensely, obsess- ON A MINI?

ively contemplating possible ways that users
might break into the system, and elaborately

programming defenses and countermeasures into
the monitor. How do I know this? I know this
from A, who constantly went through B's waste-
basket. A still plans incessantly for the day
B will get a big taunting printout, coming un-—
expectedly to him off the machine, that shows
him all his secrets are known.

WOULDN'T IT COST LESS IF WE GOT A MINICOMPUTER
FOR THIS TASK?

WHY CAN'T THIS BE PROGRAMMED IN SOME LANGUAGE
LIKE BASIC?

YOU KNOW AND 1 KNOW THAT COMPUTERS DON'T
HAVE TO WORK THAT WAY. WHY DO YOU CHOOSE

TO DO IT THAT WAY?

5.

The strange language of computer people makes
more sense than laymen necessarily realize.
It's a generalized analytical way of looking
at time, space and activity. Consider the
following .

If these suggestions seem u ily contentious,
it is because some of these guys like to pick on people,
and you may have o be ready. And you may need
all the support you can get, if, say, you take a stand
like one of these:

"If the information is in there, I don't see why
we can't get it out."

"You have no right to ask questions like this,
and if the program requires it, change the program."

“THERE IS INSIGNIFICANT BUFFER SPACE IN
THE FRONT HALL." (Buffer: place to put
something temporarily.)

"BEFORE I ACKNOWLEDGE YOUR INTERRUPT, LET

"
Remember, ILLEGITIMIS NON CARBORUNDUM ME TAKE THIS PROCESS TO TERMINATION .

(don't let the bastards grind you down) "COOKING IS AN ART OF INTERLEAVING

TIME-BOUND OPERATIONS." (.e., doing
parts of separate jobs in the right order
with an eye on the clock.)

THosE ADORARLE
INFURIATING

RESISTOKS.

Their name makes people think they're a war protest group,
but actually the R.E.S.1.8.T.0.R.S. of Princeton, N.J. arc a
bunch of kids who play with computers. They're all young; members
are purged when they finish high school. Their clubroom is at
Princeton University, but the initiative is strictly theirs.

The name stands for "Radically Emphatic Students Interested
in Science, Technology and Other Research Subjects.” Computers
are not all they do--they've also gotten into slot racing and the
game of Diplomacy-- but computers are what they're known for.
The Resistors (let's spell it the short way) exhibit regularly at
the computer conferences, and have startled numerous people
with the high quality of their work. They've been invited to various
conferences abroad. They have built various language processors
and done graphics; lately their fad is working with the LDS-1
in Princeton's Chemistry Department.

Php-1
TN

PIP-2

'20-1,..\,.4),
Steve 0, for
at the old ,.m\
stratght 8. ,_,,A(_J

Teleype,
(hrat

Where do they learn it all? They teach each other, of course.
Newcomers hang around, learn computer talk, work on projects,
and tease each other. They also use the informal trade channels,
subsecribing to magazines and filling out information request
cards under such company names as Plebney International Signal
Division and Excalibur Wax Fruit.

The great thing about these kids is their zany flippancy .
They've never failed, they've never been afraid for their jobs,

and so they combine the zest of the young with their expertise.
Their forms of expression are as startling to professionals as

they are to outsiders: don't say anything ponderously if it can

be said playfully. Don't say "bit field" if you can say "funny

bits; " don't say "alphanumeric buffer” if you can say "quick brown
fox box;" don't say "interrupt signal” if you can call it a "Hey
Charlie; " don't say "readdressing logic" if you can say "whoopee
box ."

What's a

group like you
doing at a
Joint like this?

Now here's my plan...

in executive session,
Atlantic City

They have varied backgrounds. The father of one is a butcher,
the father of another is one of the country's foremost intellectuals .

(None of that matters to the kids.) 1 have dined in a number ot
their homes, and find this in common: their parents show them
great respect, love and trust. Indeed, Resistor parents have
expressed some surprise to learn that their children's work is
at the full-fledged professional level. The important thing, to
the parents, is that the kids are working on constructing things
they enjoy .

R.E.5,1.5.7.0.R.5.
after infamous
Omega ceremony.

The trade press is ambivalent toward the Resistors. On
the onc hand they make good copy. (At one Spring Joint they
had the only working time-sharing demo-- on a carpet next to
a phone booth.) On the other, they sometimes scem bratty and
publicity-hungry, like many celcbrities. (At another Spring
Joint they dug up an IBM Songbook and screnaded the guys at
the (BM pavilion, who had to act nice about it.) So they don't
get written up in computer magazines so much anymore.

1 first met the Resistors in 1978, and started hanging around

with them for two reasons. First, they arc perfectly delightful:
enthusiastic in the way that most adults forego, und very witty .

To them computer talk was not a thing apart, as it is for both out-

siders and many professionals.

Secondly, and this was the self-secking aspeet, [noted
that these Kids were quite expert, and interested in giving me

advice where computer professionals would not. They got interested
in helping me with my (perhaps quixotic) Xanadu'™ project (see

flip side). This was cnough to keep me visiting for a couple of

years, Now. some people arc too proud to ask children for informa-

tion. This is dumb. Information is where you find it.

The last [heard, the Resistors were at work in a COBOL

compiler for the PDP-11, hoping it would save the local high school

from the disastrous (to them) purchase of an 1BM 1130. (Since

the school's intent was to teach business programming. they hoped
that the availability of COBOL would encourage the schoot to buy

the more powerful and less cxpensive PDP-11.)

The Resistors
in principle, an existence proof. They show how silly

and how anybody can learn anything in the right atmosphere,

stripped of its pompositics. ‘The Resistors arce not obsessed with
computers: their love of computers is part of their love of everything.

and cverything is what computers are for.

A4 coven of R.E.S.1.5.T.0.R.5.

1re few, but 1 think they are very important
hd artificial
is our cdifice of pedagogy . with all its sequences and sterilizations,

RCIISTORS. Aneedder, v

Lauren, 14, was talking to another girl at the ACM 70 con-
ference. A passerby heard her explaining the differences among
the languages BASIC, FORTRAN, COBOL and TRAC. "low long
have you been programming?” he asked in surprise. "Oh, almost
a month,” she said.

I was driving some Resistors around Princeton; they were
yelling contradictory driving instructions. "I demand triple re-
dundaney in the directions,” I said. "Right up ahcad vou turn
right right away,” said a spokesman.

tripie
redundancy

Since there was a lot of excess capacity , the Resistors got
a free account on a naticnal time-sharing system. Though they
didn't have to pay, the system kept them informed on what they
would have owed. In a year or so they ran up funny-money bills
of several hundred thousand dollars.

Did they rate free subscriptions to computer magazines?
[asked. Could they claim they really "make decisions affecting
the purchasc of computers™?

"O[course we do!" was the reply . "All together: shall
we buy a computer?"

Resistors (in unison) "NO!"

Their original advisor, whom we shall call Gaston, is mis-
chievous in his own right. It was meeting-time at Gaston's place
on a bright Saturday, and I was on the fawn working on Xanadu
with Nat and Elliott when Gaston interrupted to say that an unwelcome
salesman of burg lar alarms was about to arrive. "Let's have
a little fun with him," said Gaston. The kids were to be introduced
as Gaston's children,] was an uncle. We took our stations.

The salesman may have realized he was walking into a trap
from all the strangely beaming adolescents that stood in the living
room. He got out his wares and started to demonstrate the burglar
alarm!, but it didn't go right. Peter, standing in front of the equip-
ment with a demonically vacuous grin, had reversed a diode behind
his back so that the alarm rang continuously unless you broke
the light beam.

“Humpf," said Gaston, "you want to see a real security
system?" We trooped into the kitchen, where Gaston kept a Teletype
running.

ANY NEWS? typed Gaston.

CREAM YELLOW BUICK PULLED INTO DRIVEWAY, replicd
the Teletype. JERSEY LICENSE PLATE . . . (and the salesman's
license number), and finally, OWNER OF RECORD NOT KNOWN .
John was typing this from the other Teletype in the barn.

The salesman stared at the Teletype. He looked around

at our cherubic smiling faces. He looked at the Teletype. "That's
all right," said the salesman. "But now I'd like to show you a
security system. . ." And it was back to the old burglar
alarm.

GUDEUNES FOR
WRITERS AND SPOKESMEN

The public is thoroughly confused about
computers, and the press and publicists are
scarcely free from blame. IT'S TIME FOR EX-
PLANATIONS. People want to know what computer
systems really do-- no more of this "latest
space-age tecEnology” garbage. Mr. Business-
man, Mr, Writer, are you man enough to start
telling it straight?

The computer priesthood, unfortunately,
often wants to awe people with, or unduly
stress, the notion of the computer being in-
volved in a particular thing at all. It is
time for everybody to stop being impressed by
this and get on with things. Don't just copy-
edit what they give you. Nose around and
really find out, then write it loud and clear,

These simple rules are my suggestions for
bringing on more intelligent descriptions
that will help enlighten the public by osmosis.

1. FIND QUT AND DESCRIBE THE FUNDAMEN-
TAL APPROACH AND PHILOSOPHY OF THE PROGRAM.
This can invariably be stated in three clear
English sentences or less, but not necessarily
by the person who created it. THIS IS WHAT
WRITERS ARE FOR: it is your duty to probe un-
til the matter has become clear.

Examples.

"This chess-playing program evaluates
possible moves in terms of various criteria
for partial success, and makes the move which
has the highest merit according to these
ratings."

"This music-composing program operates
on a semi-random basis, screening possible
notes for various kinds of attractiveness.,..”

"This archaeological cataloguing system
keeps track of a variety of objective features
of each artifact, plus information on where
it was, including linkages indicating what
other artifacts were near it."

What or whose computer is used to do a
thing is of almost no concern (unless it is
one of unusual design, of which there are com-
paratively few). Not the make of the compu-
ter, but the GENERAL IDEA OF HOW THE PROGRAM
OPERATES, is the most important thing.

Of course, if you are being paid by a
hardware manufacturer, you'll have to name the
equipment over and over; but recognize that
your real duty is public understanding, and
put the Facts across. (If you think it can't
be done, read the splendid Kodak ads in the
Scientific American.)

B 2. Keep gee-whizzing restricted to the
description of a system's psychological effect
on real people. (What impresses you may turn
out to be old hat.)

3. Look for angles special to what you're
reporting. Pursuing details is likely to
bring up better story pegs and more human in-
terest. Instead of saying "computer scientists"
have done something, you might find something
more interesting for your lead; how about "The
unlikely team of a biophysicist and a teen-age
art student..." or-- finding what's special--
“Never before has this been done on a computer
so small, the size of a portable typewriter
(and having only some 4000 words of menory)..."

4. Attempt to find out how else computers
are used in the particular area, and mention
these to help orient the reader.

This goes against the exclusivist tenden-
cies we all have when we want to ballyhoo
something. It is a matter of conscience, an
important one.

5. Questions to ask:

What are the premises of your pro-
gram?

What if people turn out to need
something else?

What could go wrong?
And most important: What is that?
IMPORTANT DISTINCTIONS

It is only by clarifying distinctions
that people are ever going to get anything
straight.

6. Do not say ''the computer" when you
mean ''the system'" or '"the program."

7. Don't say "a malfunctioning computer"
(hardware error) if the computer functioned
as it was directed on an incorrect program
(software error). {(And remember th§?~%ﬁgﬂ
best programmers make mistakes, so that a
catastrophic bug in a system is no sign that
it was programmed by an incompetent, only
that it isn't finished.)

8. (A particular point about graphics.
See flip side.) Don't say "TV screen" if a
computer screen is not TV, i.e., 525 hori-
zontal lines that you can see on the screen
if you look for them. (See p.3»ML versus p.
DM 2% .) HOW ABOUT: "visual display screen"?
-- ybéu can add, "on which the computer can
draw moving lines," or whatever else the
particular system does.

9. Don't assume that your audience is
computer-illiterate.

10. Don't assume that it can't all be
said simply. Only lazy or hard-pressed writers
are unclear.

11. Do not use cutesy-talk, particular
that which suggests that computers have an in-
trinsic character. By "cutesy” I mean sen-
tences like "Scientists have recently taught
a computer to play chess,” Mis-Leads like
"What does a computer sound like?" (when talk-
ing about music constructed by a particular
program in a particular way), and awe-struck
descriptions like, At last the Space Age has
come to the real estate business...”

12. Do not use the garbage term “compu-
terized," unless there is a.clear statement
of where the computer is in the system, what
the computer is doing and how. A "computer-
ized traffic system,” for instance, could be
any damn thing, but a "system of traffic lights
under computer control, using various timing
techniques still under development,” says
something.

13. Don't put in clichés as fact, for
example by the use ©&f such terms as 'mathe-
matical™ or "computer scientist’ unless they
really apply. Do not imply any mathematical
character unless you know the system possesses
it: many programs contain no operations that
can fairly be called mathematical. Similarly,
a "computer scientist" is someone widely or

deeply versed in computers or software, not
just a programmer. (Anyway, if something has
been programmed by an entomologist, it is
probably more interesting to refer to him as
an entomologist than as a 'computer scientist.

14. Do not refer to apparent intelligence
of the computer (unless that is an intended
feature of the program, Credit rather the in-
genuity of the system's creator. Do not say
“the clever computer.'" If anybody is clever
it is the programmer or program designer, and
if you think so, say so. These guys don't get
the recognition they deserve.

15. Never, never say '"teach the computer”
as an elliptical way of saying 'write computer
programs.'" Programming means creating exact
and specific plans that can be automatically
followed by the equipment. To say "teach" when
you mean '"program'" is like '"persuading” a car
instead of driving it, or making a toilet "cry"
instead of flushing it.

(There are systems, described on the flip
side, which simulate intelligent processes and
may thus be said to "learn" or 'be taught."
But neither programming nor simulated learning
should be described in a slipshod fashion that
suggests the computer is some sort of trainable
baby, puppy or demon.}

16. Do not imply that something is "the
last word,'" unless you have checked that it is.

BIBLIOGRAPHY
Ernest Gowers, Plain Words.

This wonderful little book showed
English civil servants '‘bureaucratic
writing" was totally unnecessary. Its
precepts-- mainly concerned with calling
a spade a spade (see p. {Z)-- transpose
exactly to the computer world.

"You Blew It,
Kig

. . bad news for
student
programmers
in their

ul

printouts.

s i — U. Illinois
at Urbana.

8

ComPUTER

foN &M IScHIEF

All kinds of dumb jokes and cartoons circulate among
the public about computers. Then our friends regale us
computerfolk with these jokes and cartoons, and because
we don't laugh they say we have no sense of humor.

Oh we do, we do. But what we laugh at is rather
more complicated, and relates to what we think of as the
real structure of things.

Some of the best humor in the field is run in Datamation;
an anthology called Faith, Hope and Parity reran a lot of
their best pieces from the early sixties. Classic was the
Kludge series, a romp describing various activities and
products of the Kiudge Komputer Korporation, whose foibles
distilled many of the more idiotic things that have been
done in the field. ("Kludge," pronounced "klooj," is a.
computerman's term for a ridicul machine.) D ion's
humorous tradition has continued in a ponderous but extremely
funny s_erial that ran in '72 called Also Sprach von Neumann,
which in mellifluous and elliptical euphemisms described
the author's adventures at the "airship foundry" and other
confused companies that had him doing one preposterous
thing with computers after another.

CoMPUTER PRANKS

Pranks are an important branch of humor in the field.
Here are some that will give you a sense of it.

ZAP THE 94

One of the meaner pranks was a program that ran
orr the old 7094. It could fit on one card (in binary), and
put the)s} in an i pable loop. Unfortunately
the usual "STOP" button was disabled by this program,
so to stop the program one would eventually have to pull
the big emergency button. This burnt out all the main
registers.

TIMES SQUARE LIGHTS

One of the weirder programs was the operator-waker-
upper somebody wrote for the 7094. It was a big program,
and what it did was DISPLAY ALPHABETICAL MESSAGES
ON THE CONSOLE LIGHTS, sliding past like the news in
Times Square. You put in this program and followed it
with the message; the computer’s console board would light
up and the news would go by. Since the lights usually
blink in uninteresting patterns, this was very startling.

This program was extremely complex. Since the
94 displayed the contents of all main registers and trap,
arithmetic and overflow lights, it was necessary to do very
weird things in the program to turn these lights on and
off at the right times.

THE TIME-WASTER

In one company, for some reason, it was arranged
that lal.'ge and long-running programs had priority over v
short quick ones. Very well: someone wrote a counterattack
program occuping several boxes of punch cards, to which
you added the short program you really wanted run, and
a card specifying how iong you wanted the first part of
the program to grind before your real one actually started.

This would blink lights and spin tapes impressively

and lengthen the run of your program to whatever you wanted.

BOMBING THE TIME-SHARE

One of the classic bad-boy pranks is to bomb time-
sharing systems-- that is, foul them up and bring them to
a halt. Many programmers have done this; one has told
me it's a wonderful way to get rid of your aggressions.

Of course, it can damage other people's work (especially
if disks are bombed); and it always gets the system program-

mers hopping mad, because it means you've defied their
authority and maybe found a hole they don't know about.
Here are a couple of examoles.

1. THE PHANTOM STRIKES

The way this story is told, one of the time-sharing
systems at MIT would go down at completely mysterious
times, with all of core and disk being wiped out, and
the lineprinter printing out THE PHANTOM STRIKES.

For a long time the guilty program could not be
found. Finally it was discovered that the bomb was
hidden in an old and venerable statistics program
previously believed to be completely reliable. The
reason the phantom didn't always strike was that the
Bomb part queried the system clock and made a pseudo-
random decision whether to bomb the system depending
on the instantaneous setting of the clock. This is why
it took so long to discover; the program usually bided
its time and behaved properly.

Apparently this was the revenge of a disgruntled
programmer, long since departed. Not only that, but
his revenge was thorough: the Bomb part of the program
was totally knitted into the rest of it, it was a very
important program that had to be run a lot with different
data, and no documentation existed, making it for
practical purposes impossible to change.

The final solution, so the story goes, was this:
whenever the rowdy program had to be run, the rest
of the machine was cleared or put on protect, so it ran
and had its fits in majestic solitude.

2. RHBOMB

The time-share at the Labs, never mind which
Labs, kept going down. Mischief was suspected. Mis-
chief was verified: a program called RHBOMB, sub-
mitted by a certain programmer with the initials R.H.,
was responsible, and turned out always to be present
when the terminals printed TSS HAS GONE DOWN. It
was verified by the systems people that the program
called RHBOMB was in fact a Bomb program, with no
other purpose than to take down the time-sharing system.

R.H. was spoken to sternly and it did not hap-
pen again.

However, some months later a snoopy systems
programmer noted that a file called RHBOMB had been
stored on disk. Rather than have R.H. scalped pre-
maturely, he thought he would check the contents.

He sat down at the terminal and typed in the com-
mand, PRINT RHBOMB. But before he could see its
contents, the terminal typed instead

TSS HAS GONE DOWN

But this was incredible! A program so virulent that
if you just tried to read its contents, without running
it, it still bombed the system! The systems man
rushed from the room to see what had gone wrong.

He did so prematurely. The contents of the
new file RHBOMB were simply

TSS HAS GONE DOWN

followed by thousands of null codes, which were sil-
ently being fed to the Teletype, 10 per second, pre-
venting it from signalling that it was ready for the
next thing.

(rfiEp

Games with computer programs are universally enjoyed
in the computer community. Wherever there are graphic
displays there is usually a version of the game Spacewar,
(see Steward Brand's Spacewar piece in Rolling Stone,
mentioned elsewhere.) Spacewar, like many other computer-
based games, is played between people, using the computer
as an animated board which ean work out the results of
complex rules.

Some installations have computer games you can play
against; you are effectively "playing against the house,"
trying to outfox a program. This is rarely easy. A variety
of techniques, hidden from you, can be used.

When "a computer" plays a game, actually somebody's
program is carrying out a set of rules that the programmer
has laid out in advance. The program has a natural edge:
it can check a much longer series of possibilities in looking
for the best move (according to the criteria in the program).

There is a more complicated approach: the computer
can be programmed to test for the best strategy in a game.
This is much more complicated, and is ordinarily considered
an example of "artificial intelligence" (see "The God-Builders,"
elsewhere in this book) .

(oNWRY'S GAME OF [!FE

A Grand Fad among computerfolk in the last couple
of years has been the game of "Life," invented by John
Horton Conway .

The rules appeared in the Scientific American in
October 1870, in Martin Gardner's games column, and the
whole country went wild. Gardner was swemped with
results (many published in Feb. 71); after a couple more
issues Gardrer washed his hands of it, and it goes on
in its own magazine.

The game is a strange model of evolution, natural
selection, quantum mechanics or pretty much whatever
else you want to see in it. Part of its initial fascination
was that Conway didn't know its long-term outcomes, and
held a contest (eventually won by a group from MIT) .

The rules are deceptively simple: suppose you have
a big checkerboard. Each cell has eight neighbors: the
cells next to it up, down and diagonally .

Time flows in the game by "generations." The pattern
on the board in each generation determines the pattern
on the board in the next generation. The game part simply
consists of trying out new patterns and seeing what things
result in the generations after it. Each cell is either GCCUPIED
or EMPTY . A cell becomes occupied (or "is born") if exactly
three of its neighbors were full in the previous generation.
A cell stays occupied if either two or three of its neighbors
were occupied in the previous generation. All other cells
become empty ("die").

These rules have the following general effect: patterns
you make will change, repeat, grow, disappear in wild
combinations. Some patterns move across the screen in
succeeding generations ("gliders"). Other patterns pulsate
strangely and eject gliders repetitively (glider guns).

Some patterns crash together in ways that produce moving
glider guns. Weird.

While the game of Life, as you can see from the rules,
has nothing to do with computers intrinsically, obviously
computers are the only way to try out complex patterns
in a reasonable length of time.

3

P Lot
I ':2: ’ wil. ® EN
‘ Cil\ o ?T:;LLWIEE_S. /!:'j

I S{&Q\gﬂ [1)@@

a
tog — B — aog ("{an)\Du‘)
B9 = 58 (M)

Dgg —08,3 » o o &c‘('a\'ﬁuﬂ)
’ a Do

NON-OBVIOUS RESULTS OF SOME SIMPLE PATTERNS:

some die, one blinks back and forth, others become stable.

(Conway's Game of Life programmed for PLATO by Danny Sleator.)

BIBLIOGRAPHY

Donald D, Spencer, Game Playing with Computers.
(Spartan/Hayden, $13.) This includes flow-
charts, programs and what-have-you for some
25 games, and suggestions for more.

A continuing series of game programs (mostly or
all in BASIC) appears in PCC, a newspaper
mentioned earlier,

Stewart Brand's marvelous Spacewar piece, also
mentioned earlier, is highly recommended.

Robert C. Gammill, "An mxamination of Tic-Tac-Toe-
like Games." Proc. NCC 74, 349-355.
Examines structure of simple games
(esp. 3D tic-tac-toe or QUBIC) where forced
wins are possible; and program structures to
play them.

WIhe Game of Life," Time, 21 Jan 74, 66-7-

(Lifeline, said to be published by Robert T.
Wainwright of Wilton, Connecticut.)

SURNIVAL oF THC FiTTEST

One of the stranger projects of the sixties was a game
played by the most illustrious programmers at a well-known
place of research; the place cannot be named here, nor
the true name of the project, because funds were obtained
through sober channels, and those who approved were
unaware of the true nature of the project, a game we shall
call SURFIT ("SURvival of the FITtest".) Every day after
lunch the guys would solemnly deliver their programs and

see who won. It was a sort of analogy to biological evolution.

The programs would attack each other, and the survivors
would multiply until only one was left.

It worked like this. Core memory was divided up
into "pens," one for each programmer, plus an area for
the monitor.

3nimal A auh«d¥;>/
Tms /dstJaumﬂ
i il

SURFIT MON\TOR

Each program, or "animal," could be loaded anywhere

in its pen. The other programs knew the size of the pen
but not where the animal was in it. Under supervision

of the special monitor, the animals could by turns bite
into the other pens, meaning that the contents of core at
several consecutive locations in the other pen was brought
back, and changed to zero in its original pen.

Your animal could then "digest"-- that is, analyze--
the contents bitten. Then the other animal got his turn.
If he was still alive-- that is, if the program could still
function-- it could stay in play; otherwise the animal who
had bitten it to death could multiply itself into the other
pen.

The winner was the guy whose animal occupied all
pens at the end of the run. If he won several times in a
row he had to reveal how his program worked.

_ As the game went on, more and more sophistication
was poured into the analytic routines, whereby the animal

analyzed the program that was its victim; so the programmer

could attack better next time. The programs got bigger
and bigger.
¢

Finally the game came to a close. A creature emerged

who could not be beaten. The programmer had reinvented
the germ. His winning creature was all teeth, with no
diagnostic routines; and the first thing it did was multiply
itself through the entirety of its own pen, assuring that
no matter where it might just have been bitten, it would
survive.

OTHER. ANIMKL WINNING ‘GEem'®

/2 W |

MTER BITE:
CANNOT SURV IVE,

o o o e e o e)
complete. unify

AFTER 8I1TE

$irst suvvivin
al;le,n ce|

AFTER SELF -Qﬂmf

Srg,d
]
LT AIT LPALLN
AL x"' r,,:"

When word got around that this nude was in a public file on the
time-sharing system, my office-mates scrambled to get printouts of her.
The cleverest, though, had a deck punched. As he predicted, she was
thrown off by the systems people within an hour or so—- leaving the other
guys with their printouts, but he had the deck. Now he can put her
back in the computer any time, but they can't.

‘H

YOU MAY TERMINATE THE FOLLOWING PRINTOUT
KEY.

PLEASE PRINT YOUR NAME IN THREE PARTS SEPARATED BY BLANWKS.
PLEASE PRINT YOUR NAME IN THREE PARTS SEPARATED BY BLANKS.

*
:
5
g
e s
g g 2
z H E 5: 5
A @ o 2 z
x X @ z o =
g = §§ & =2 Z e =
3 g #3 g % 8wz
§ 3¢ B2 3§ . &f 5o e
g 23 2§ £ 2 &
g . g . £ g8 =T fag
g ¥ o5 2EF ® oo RS
£ OEC 5 . T g ,,, &5 8%
H g i i E o3 3y 3%
¥ %Q g £3 S 2 g% .
3 £ % s s 8 o83
s 23 5 3% 35 i g & g8f i

MACHINE MOVES TG 414

YOUR MOVE?411

Twitting a program within its own premises

is a jolly aspect of computer fun. This game of
three-dimensional tic-tac-toe was played with a
program running on a minicomputer at the Spring
Joint, 1969. CAUTION-- ADULTS ONLY.

While this example may offend some people,

it vividly shows how programs may be toyed with
-- in this case, by the mischievous sign-on—-

to make them behave humorously.

433 434

432

NICE TRY MOTHER--MACHINE MOVES TQ 322
NICE TRY MOTHER--MACHINE MOVES TO 133
NICE TRY MOTHER--MACHINE MOVES TQ a21

- . X coXx x x =X o —
: % % % 1oy < < g &3
R A 38 g g 8iis $iis é EEEE
- - o “© Zg

N s o o oo el

EEE figt RS e -
2 R ° e et igel el LS 23z
- - on S3%D0 0B IEYD 0§ IRY:D | 0§ R%D 432
13 8 n 23 3 3 z g 838
g g ¥ a8 g 2 E) § 282
5§ £¢ R g 2 5 R 5 iist g 325
g gE g g Boo iiel ok § . gt & 3%

. E i i :
gy gy g ¥ g g g g £ g gzt

E z . z « x = . x « B
58 % EH] g 3 g 3 H : H : H : ER £ 1
£F % E$] 2 f x g 2 2 % 2 < 2 % £ 382

GANE

GAME MR. FUCKER?

YOU CAN TRY SOME OTHER PROGRAMS OR PLAY ANOTHER

WOULD YOU LIKE ANNTHFR

oW CoMUTER STUFF
1S BOUGHT &) oLty

For the most part, big computers have
always been rented or leased, rather than
bought outright. There are various reasons for
this. From the customer's point of view, it
makes the whole thing tax-deductible without
amortization problems, and means that it's pos-
sible to change part of the package-- the model
of computer or the accessories-- more easily.
And big amounts of money don't have to be
shelled out at once.

From the manufacturer's point of view (and
of course we are speaking mostly of IBM), it is
advantageous to work the leasing game for
several reasons. Cash inflow is steady. The
manufacturer is in continuous communication
with the customer, and has his ear for changes
and improvements costing more. Competitors
are at a disad g the i
capital base needed to get into the selling-and-
leasing game makes competitition impossible.

Basically, leasing really may be thought
of as having two parts: the sale of the computer,
and banking a loan on it; essentially the lease
payments are installment payments, and the real
profits come after the customer has effectively
paid the real purchase price and is still forking
over.

Many firms other than IBM prefer to sell
their computers outright. Minicomputers are
almost always sold rather than rented. However,
for those who believe in renting or leasing, the
so-called "leasing firms" have appeared, effec-
tively performing a banking function. They buy

SOFTWARE

Computer programrs, or "software," uscd
o come free with the computer. But IBM turned
around and "unbundled," meaning you had to
buy it separately, and there has been some fol-
lowing of this example. However, for users who
are buying a computer with some canned program
for a particular purpose, prices are obviously
for the whole package; it's people who use the
same computer for a lot of different things that
have to pay for individual programs.

There are msny smell software companies.
For the cost of a letterhead anyone can start one;
the question is whether he has anything special
to sell. Some peaple whomp up programs on
their own which turn out to be quite useful.
(For instance, one Benjamin Pitman offers a
magnificent program in Fortran to generate tex-

USED COMPUTERS

While in principle there would seem to be
every advantage in buying used computers, there
are certain drawbacks. Service is the main one:
the manufacturer is not very helpful about fixing
discontinued machines, and you may have to know
how to do it yourself. Even with machines still
avsilable, you may have trouble getting onto a
service contract from the manufacturer, since
it "may have been mistreated.” (American Used
Computer, in Boston, will usually guarantec
that its merchandise will be accepted back into
manufacturer's contract service.) A final draw-
back is price: a popular machine may cost as
much used as new, since they're saving you the
waiting period.

it's kind of unfortunate: otherwise usable
machines get wasted. (But here's waste for
you: certain well-known laboratories, owned by
a profit-making monopoly, smash their used com-
puters if nobody wants them within the lab.
They ciaim they can't resell them beczuse they
would then be “"competing™ with the manufacturers.
1 wish the conservationists would get on that one.)

(Notes from all over: it seems that all the
surviving numbers of the Philco computer, a nice
machine but very much discontinued, have ei-
ther gone to the state of jsrael or to Pratt Insti-
tute in Brooklyn. When I spoke at Pratt they
showed me their Philco machines, chugging heal-
thily, and said they had ({ think) some four more
Philcos in crates, donated by their original owners.

ANNOUNCEMENTS

An eccentric aspect of the computer field
is the Announcement, the statement by a company
(or even individual) that he is planning to make
or sell a certain computer or program. Some

the computer, you rent or lease it from them, N very odd things happen with announcements in
and they make the money you would've saved tual garbage. It's so good it can be used to this field. (None of this is unique to computer-
if you'd bought. expand proposals by hundreds of pages. He
calls it Simplified Integrated Modular Prose (SIMP)
and it sells for $10. His address is Computer
Center, University of Georgia, Athens GA 30602%)

dom, but it goes to unusual extremes here.)

IBM, now required to sell its computers
as well as lease them, keeps making changes
in its systems which cynics think are done partly
to scare companies away from leasing, since Obviously, to create big systems for intri- A A " >
if you've bought the computer you can't catch up. cate management purposes requires a great deal through his teeth, it's not ordinarily considered
(Large computers bought from companies that more effort. Traditionslly thesc are done by fraud unless money changes hands. Talk is
lke to sell them, such as DEC and CDC, do not vast programmer teams working in COBOL or cheap. Thus it is comnwon practice in American
seem to have this problem.) the like, constantly fighting with monitor programs industry for people to say that they will soon
and chewing up millions of dollars. However, be selling hundred-mile-an-hour automobiles,
the new Quickie Languages (three shown pp. J(25) tapioca-pocwered rocketships, antigravity belts.
may offer great simplification of such programming
tusks. Okay. In the computer world the same

thing happens. Thc strategy depends on the
it 0"’ Mﬁ‘NTENhN‘!E N]) announcer's market position. The little guys
] rograms are protected by copyright-- are often bluffing wistfully, hoping someone will
that's the only way there can be a software in-

X get interested enough to put up the money to
dustry at all-- but since there has been no

atall-- ¢ - finish the project, or the like: the big companies
court litigation in the field, nobody knows what

hon 1 are often "testing the water,” looking to see

the law really is or what it covers. Everybody whether there are potential customers for what
agrees that traditional copyright precedent covers they haven't even attempted to develop. Announce-
a lot of ground-- "derivative works” definitely ments by big companies also have strategic value:
violate copyright, even study guides to textbooks-- if they announce something a smaller guy has

- but no one knows how far this goes. already announced, they may cut him off at the
pass, even though they have no intention of

Under our system it is permissible for any
person or firm to anncunce that he will make or
sell any particular thing, and even if he's lying

A practical problem of immense importance is "maintenance,”
meaning repair and upkeep of computers and their accessories.
Lots of guys in Boston and L.A. are having fun making computers,
but here you are stuck in Squeedunk and it Goesn't work anymore.

Trying to find people who will fix these things on a stable
basis is a great problem.

You can sign a “maintenance contract" with the manufacturer,

which is sort of like breakdown insurance: whatever happens Same for patents. The Patent Office has delivering. That's just one example. The anal-
he'll fix. Eventually. If you own equipment from different granted program patents, notably the one on DA e
manufacturers, though, it's worse: each manufacturer will only the sorting program of Applied Data Research ysis of IBM's announcements is & par, or game
contract to fix his own equipment. (And remember, interfaces N ! in the field. It has been alleged, for instance,

Inc., but The Patent Office has a profound dis-
tauste for this potential extension of its duties,
This is the biggest point in favor of IBM. Their maintenance is and is telling everyone that programs aren't
superb. patentable, even though they clearly fell within
its mandate as unique, original prccesses.

have to be maintained too.) that IBM announced its 360 computer long befcre
it was ready to cut off incursions on its cus-
tomers by other firms; Control Data, in a recent
suit, alleged that the Model 90 numbers of the
360 were announced, and then developed, simply
to destroy Control Date and its own big fast
michines. These are just examples.

There's also something called third-party maintenance: companies
who'll contract to keep all your hardware working. RCA and

People who only rcud the headlines thirk
Raytheon are into that.

that the Supreme Court struck down the patent-

ability of programs. No such thing. In other words, caveat auditor.

In this light the patents that the University
of Utah has gotten on the halftone image synthesis
programs of Warnock and Wylie and Romney (see
p.) are of considerable interest. These
patents use the "software-as-hardware” ruse: the
program is described in detsil as taking place in
a fictitious machine shown in meany detailed draw-
ings whose nebulous character is not readily
seen by the uninitiated: events vaguely taking
place in "microprogrammable microprocessors'

atsmation ran several good articles on
buying computer stuff in its Septem-
ber, 15, 1970 issue.
"Software Buying" by Howard
Bromberg (35-40) and "Contract
Caveats" by Robert P. Bigelow (41-
44) are very helpful warnings about
not getting burned.

THE SEVEN DWARVES AND THEIR FRIENDS

The computer companies are often

“ called "Snow White and the Seven Dwarves,"

even though the seven keep changing. Here
are some main ones beside IBM. I hope 1

haven’t left anyone out.

Requiescant in Pace: have been neatly foisted on the Patent Office as Another, "Project Management
Sperry Rand Univac General Electric detailed technical disclosure. Tt's a great game. Games," by Werner W. Leutert (24-
Honeywell (sold out to Honeywell) The idea is that the claims are so drawn as to 34) is an absolutely brilliant, blood-
B x‘x‘Zu he RCA (sold out to Univac) cover not just the fictitious machine, but any curdling strategic analysis of‘ the
C:ntmlgDam Corporation (CDC) Philco program that should happen to work the same loys a;g]d dan 'gers involved in buy-
i po General Foods way. But such approaches, though common to poy Ang o buy .
National Cash Register (NCR) i previous. patent practices, have not t b ing and selling very expensive things.
Digital Equipment Corporation (DEC) & others beyond recoliection. P L4 ' not yet been such as computers and software.

litigated in this field,
Xerox Data Systems (XDS; formerly iigated in this Held ANYONE INVOLVED IN COMPUTER

Scientific Data Systems (SDS)) MANAGEMENT SHOULD READ THIS
Hewlett-Packard. (HP) MACHIAVELLIAN PIECE WITH THE

Data General GREATEST CARE. Anyone interes-
Interdata, Inc. T — ted in the theory of showdown and
Varian Data Machines R T negotiation can read it with a differ-
Lockheed STary, - ent slant.

Loy T

\ tir, -

T - HEw

o e . \
1A= gy GOy

ST NI L
X B \

&»\e mv£“‘7 rwjrw;
GIFU“‘- pﬁ““, €

PRG; Ely STy 4 WY T
I O8vioys Merre

Ny
HiIRp LTy o Ti ; I AS kg \ S .
U GENERgT; SUSCE s A Cong o durg LEIUTITS e
AT Lun ¢ A LA Syoyedts

T Ss A3 T3 . T
! Wiie AN M!M’u’\n iy MR INST 5, .
—Manag A 4 R T Far, e g OF Feglp R Lna T
¢ .A\GME, r Sut AN o o Cusr o, H et r
ONCEpT o~ Flex LMD Eing i
4 ~NECEs S Tacea By T ICATT ~ED e
4 £SSir Cor Lo Fi Ny pam -
cam can PE° UALTE Tages T ?INGU in Tig SHUA”UFL .
o 2 c . 1n, AR TR I P LI
carend®t porTRAN PR T atendats ElRTp g ST 10Ny g e AT oy Rag AN
hrough ﬂ““'veuhed atop 2 ctek ’Muam“/:‘;’mmn 0yl Ty 2R G e sage)y M A
is 1 pos 7 Rarpgy. 1T 3 L
punny WO by in T fer“" e details T Y axiy, i FL PeLre, :r' A
4 reriof: 515, ~ . X Togx
ur the 0 ned.
3 rach
o AonouRSeTENT o p “Cf o annoURCEMENT L eg cop
Birt pLil ¥F £ab
To t aracte”
he de 60 €
with © The
y Y .
nay 0¢cU®) ¢ double mote
S T
ose (trer PaF 4 by of 3
a e top
ced MOOUIBT [L oo 98BS 2 es 0LV fac the TN ime
cied 10teERS0 S e of TS g praced Bl pte vo
simpli FORTRAN P ment & ta Gach giele © cer fT cable 30 N
it 2 (matle cards: am uses ® lei es £ d‘ee e '¥ePO erays !
l‘;‘;r"““tw ti:\g. ™e ;og; 4 serect® v(ha s €0 (\ucc51 of tne —hosge
one 758 MO penerato” | Mand P"‘;Yg castn® B0 L S0 T
v nte 4 3 e ol o
rando® ™ 1ato pand rrach® CoNF R Un L
Conbines TR Y e deck 5°° ISwg e r‘:‘ﬁ” Treg S WTE .
e PIORET the BP 11ed over €0 PREsenrg - R ;Q\ENSJ::LAH R i
he ing P T KTk ACH T2 RE Cony U
and O) sreith \,eu;“ ords ey YF:’HLVF 1(;:,13””‘“”1/
ganta 3® Above TEREST) . s,
1 s K
and Reindeet Listed groduCES W e [;dsce
santd deck when and hOUSES TUrAR. .
The s 24 ‘

top oy NEM =L
ral r.reE‘ and HAD Hwg
SR QURISTEAS RECoayatives, ,

INFERR T ZES TR~ Lavge UTTI i
s TR T gl TRy Ayl LT7 -
5 S000PY HAN, o) Ram Las, "
ces MErergg "u”““'

du
oopY hen 1isted PTO * More recent address: \ Ay
S0 e deck ¥ c/o Computech Systems Inc

1819 Peachtree Rd.,
Atlanta GA 30309.

ﬂow (SOME

Cowpurer Companies
Ree FINRNCED —
A PERSPECTIVE

Those of us who were around will never
forget the Days of Madness (1968-9). Computer
stocks were booming, and their buyers didn't
know what it was about; but everywhere there
were financial people trying to back new com-
puter companies, and everywhere the smart
computer people who'd missed out on Getting
Theirs were looking for a deal.

Datamation for November 1969 was an inch
thick, there were that many ads for computers
and accessories.

At the Fall Joint Computer Conference that
year in Las Vegas, I had to cover the highlights
of the exhibits in a hurry, and it took me all
afternoon, much of it practically at a trot. Then,
after closing time, I found out there had been
a whole other building.

it is important to look at how a lot of these
companies were backed, the better to understand
how irrationality bloomed in the system, and
made the collapse of the speculative stocks in
1970 quite inevitable.

A number of companies were started at
the initiative of people who knew what they were
doing and had a clear idea, a new technique or
a good marketing slant. These were in the
minority, I fear.

More common were companies started at
the initiative of somebody who wanted to start
"another X"-- another minicomputer company,
another terminal company, expecting the product
somehow to be satisfactory when thrown together
by hired help. Perhaps these people saw com-
puter companies as something like gold mines,

putting out a common product with interchangeable

commodity value.

The deal, as some of these Wall St. hangers-

on would explain it, was most intriguing. Their
idea was to create a computer company on low
capital, "bring it public" (get clearance from the
SEC to sell stock publicly), and then make a
killing as the sheep bought it and the price went
up. Then, if you could get a "track record"
based on a few fast sales, the increasing price
of your stock (these are the days of madness,
remember) makes it possible to buy up other
companies and become a conglomerate.

3.
)
e
) oot
P 20 8 ¢
€0 Sant A00%) o ¢ e
goVEeT SUNeT it ¢o*® pe®
<e\V h EANY \i\\““ o ®
458 2 3 .
o 2° \ 0 \ RO
ue us
et) @ . w2 o
€ sue®’ ot et ® ot o e G5
grot® wetv Y <we ourd Pt
A ot o o » 18
ot e 2 2 o M
" e syt on® \of) co‘“"aﬁ e 3 o
“\c“ S b A . e \a)
e S
Y o 0""7 e ot oo ° x \56“2 109 we
oV < o o [a)
(3 2 et
\'\“\z 3 * P od® o™ e
o ned”
AR ©0

Yes, it's real.
Life imitates art
on Route 46, N.J,

It was very difficult to talk to these people,
sarticularly if you were trying to get support for
a legitimate enterprise built around unusual ideas.
(Everybody wants to be second.) And what's
worse, they tended to have that most reprehen-
sible quality: they wouldn't listen. Did they
want to hear what your idea actually was? "I'll
get my technical people to evaluate it"-- and
they send over Joe who once tock COBOL. 1
finally figured out that such people are impossible
to talk to if you're sincere-- it's a quality they
find unfamiliar and threatening. I don't think
there's any way a person with a genuine idea
can communicate with such Wheeler-Dealers;
they just fix you with a piercing glance and say
"Yeah, but are we talking about hardware or
software?" (the two words they know in the
field) .

“IT'S A WHEELER!"

The joker is that if you missed out on all
this you were much better off. Anyone with a
genuine idea is being set up for two fleecings:
the first big one, when they tell you your ideas,
skills and long-term indenture are worth 23%
(if you're lucky) compared to their immense con-
tributions of "business knowhow," and the second
when you go public ‘and the underwriter gets
vast rakeoffs for his incomparable services. What
is most likely to get lost in all this is any orig-
inal or structured contribution to the world that
the company was intended, in your mind, to
achieve.

In part this is because anyone with tech-
nical knowledge is apparently labelled Siily
Technician in the financial community, or Impos-
sible Dreamer; it is entrenched doctrine among
many people there that the man with the original
idea cannot be allowed to control the direction
of the resulting company. In one case known
to me, a man had a beautiful invention (not
electronic) that could have deeply improved
American industry. It was inexpensive, simple
to manufacture, profoundly effective. He made
his deal and the company was started, under
his direction. But it was a trick. When the
second installment of financing came due (not
the second round, mind you), the backers
called for a new deal, and he was skewered.
Result: no sales, no effect on the world, no
nothing to speak of.

This is all the sadder because the com-
panies that achieve important things in this field,
as far as [can see, are those with- a unifying
idea, carried out unstintingly by the man or .
men who believe in it. I think of Olsen's Digital
Equipment Corporation, Data General, Evans and
Sutherland Computer Corporation, Vector General.
This is not to say that a good idea succeeds
without good management or good breaks: for
instance, Viatron, a firm which was the darling
of the computer high-flying stocks, had a per-
fectly sound idea, if not & deep one: to produce
a video terminal that could be sold for as little
as $100 a month. But they got overextended,
and had manufacturing troubles, and that was
that. (You can now get a video terminal for
$49 a month, the Hazeltine.) Of course, a lot
of ideas are hard to evaluate. A man named
Ovshinsky, for instance, named a whole new
branch of electronics after himself ("ovonies"),
and claimed it would make integrated circuits
cheaper or better than anybody else's. Scoff,
scoff. Now Ovshinsky has had the last laugh:
what he discovered some now call "amorphous
semiconductor technology,” and his circuits are
being used by manufacturers of computer equip-
ment. Another example is one Frank Marchuk,
whose "laser computer" was announced several
years ago but hasn't been seen yet. Many com-
puter people are understandably skeptical.

This is still a field where individuals can
have a profound influence. But the wrong way
to try it is through conventional corporate fin-
ancing. Get your own computer, do it in a
garret, and then talk about ways of getting it
out to the world.

BIBLIOGRAPHY

John Brooks, The Go-Go Years. Weybright

& Talley. $10.

52

e BEREMOTY

LB,

s, koo affechonil

Eh‘kvm‘ﬁoual B'J Moﬂcy
E‘ﬂ}'%ﬂf\ Machine C.

Rrternsfions] Brefrerheod & Majcfaw

"I Being MLoves "
E’«ﬂﬁm P BlackMSJ'
TnBleakest Mordor
il Beﬁevﬁamw
as wel) o5
Melher o Us Al
The Grim G-rejGiaﬁ
Bia Mama Crass
Securty Blanket
Snow Whte
GW‘; Mevace

and

BB Rrother. .

"IBM," as everyone knows, is the trade
mark of the International Business Machines
Corporation, an immense company centered in
Armonk, N.Y., but extending to over a hundred
countries and employing well over a quarter of
a million people.

IBM dominates two industries, computers
and electric typewriters.

To many people, IBM is synonymous with
computers. Some of the public, indeed, believes
them to be the only computer manufacturer.

In cameras and film, there is Kodak. In
automobiles, there is General Motors. And in
the computer field there is IBM.

IBM sells some 65 to 70% of all the com-
puters and programs that are sold. In this res-
pect. the balanced near-monopoly, they are like
Kodak and GM.

But there are important differences. Ev-
everybody knows what a camera is, or an auto-
mobile. But to many. if not most, people, a
computer is what IBM says it is,

The importance of this firm, for good or
ill, cannot be overstated: whose legend is so
thick, whose stock prices have doubled and re-
doubled. ten times over, to its multibillion-dollar
mass; whose seeniing infallibility-- at least, as
seen by outsiders-- have been the stuff of
legend, whose style has proliferated across the
world, a style which has in a way itself become
synonymous with "computers;" whose name sym-
bolizes for many people-- remarkably, both '
those who love it and those who hate it-- the
New Age.

The rigidity associated in the public mind
with "the computer” may be related in some
deep way to this organization. As a corporation
they are used to designing systems that people
have to use in their jobs by fiat, and thus there
are few external limitations on the complications
to our lives that IBM can create.

Many people mistake IBM for "just another
big company," and here lies the danger. IBM's
position in the world is so extraordinary, so
carefully poised (as a result of various anti-
trust proceedings and precautions) just outside
of total monopoly of a vitally important and all-
penetrating field, that much of what they do has
implications for all of us. Ralph Nader's con-
tentton that General Motors is too powerful to
function as an independent government surely
applies even more to IBM. General Motors is not
in a position to persuade the public that every
car has to have ten wheels and a snowplow.
IBM seems in some ways to have molded compu-
ters in its own image, and then persuaded the
world that this is the way they have to be.

But IBM is deeply sensitive, in its way,
to public relations, and has woven an extensive
system of political ties and legends (if not
mythology) which have kept it almost completely
exempt from the critical attention of concerned
citizens.

Thus it i§ necessary here, simply as a
matter of covering the field at an introductory
level, to raise some questions and criticisms
that occur to people who are concerned about
IBM. IBM presumably will not mind having
these matters raised: their public-spirited con-
cern in so many areas assures that when some-
thing so publicly important as the character of
their own power is concerned, occasional
scrutiny should be welcome.

A FINE PROGRESSIVE CORPORATE CITIZEN
AND A WONDERFUL EMPLOYER

It is important to note first of all that IBM
is in many respects the very model of a gener-
ous and dutiful corporate citizen. In "commun-
ity relations," in donations to colleges and uni-
versities, in generous release of the time of its
employees for charitable and civic undertakings,
it is almost certainly the most public-spirited
corporation in America, and perhaps on the
face of the earth.

They have been generous about many
public interest projects, from Braille transcrip-
tion to donating photographers and facilities for
films on child development.

The corporation sponsors worthwhile cul-
tural events. "Don Quixote” with Rex Harrison
on TV was terrific, Katherine Hepburn's "Glass
Menagerie" was marvalous.

They treat their small suppliers honorably
and with great solicitude.

IBM's enlightenment and benevolence
toward its employees is perhaps beyond that of
any company anywhere. They have rigorously
upgraded the position of women and other minor-
ity employees; the opportunities for women may
be greater there than anywhere else. They have
upgraded repair of their systems. at any level,
to white-collar status. and tool kits are disguised
as briefcases. This innovation, making a repair-
man into a "field engineer," is one of the clever-
est public-relations and employment policies ever
instituted .

They are openhanded to employees who
want to run for office. evidently regardless of
platform. In the sixties there were peace candi-
dates who worked for IBM. and evidently got
time off for it. More recently, Fran Youngstein,
an IBM marketing instructor, was a 1973 candi-
date for Mayor of New York on the ticket of the
Free Libertarian Party, opposing all laws against
victimless crimes (e.g. prostitution and odd sex),
as well as Day Care and welfare.

They also rarely fire people. Once you're
in, and within certain broad outlines, it's ex-
tremely safe employment. For those who turn
out not to fit in well, they have a tradition of
certain gentle pressure-practices like moving
you around the country repeatedly at IBM ex-
pense. This encourages leaving, but also ex-
poses the less-wanted employee to a variety of
opportunities he might not otherwise see. without
the trauma and anxiety of dismissal.

It is said that there are IBM firings, but
they are rare and formidable. Heywood Gould's
description of an IBM firing (Corporation Freak,
pp. 113-115), for which he does not claim au-
thenticity, is nevertheless bloodcurdling.)

IBM's international manners (in its 115
countries) are likewise praiseworthy. Compared
to the perfidious behavior of some of our other
multinational corporations. they are sweetness
and light and highschool civics. Sensitive to
the feelings of people abroad, they are said to
operate carefully within arrangements made to
satisfy each country. They train nationals for
real corporate responsibility rather than bringing
in only outside people. And they are sensitive
to issues: for instance, they recently refused to
set up an Apartheid computer in South Africa.

ONE THING IS PERFECTLY CLEAR:

IBM has no monopoly on understanding or sophistication

THEN WHY SUCH A RANGE OF FEELINGS
TOWARD IBM?

Among computer people, feelings toward
IBM range from worship to furious hate (depen-
ding only in part on whether you work there).

Many, many are of course employed by
IBM, and the devotion with which they embrace
the corporation and its spirit is a wonder of the
world . *

But the spiritual community of 1BM extends
further. Upper-management types, especially
Chairmen of Boards and comptrollers, seem to
have a reverence for IBM that is not of this
world, some amalgamated vision which entwines
images of eternal stock and dividend growth
with an idealized notion of management efficiency.
Many others use and live with IBM's equipment,
and view IBM as anything from "the greatest
company in the werld” to "a fact of life" or even
"a necessary evil." In some places whole colo-
nies of users mold themselves in its image, so
that around IBM computers there are many "little
IBMs," full of people who imitate the personali-
ties and style of IBM people. (RCA. before its
computer operation fell to pieces. imitated not
just the design of IBM's 360 computer, but a
whole range of titles and departmental names
from out of IBM. The sincerest form of flattery.)

But outside this pale-- beyond the spiri-
tual community of IBM-- there are quite a few
other computer people. Some simply ignore IBM,
being concerned with their own stuff. Some
like IBM but happen to be elsewhere. Others
dislike or hate IBM for a variety of reasons,
business and social. And this smoldering
hatred is surely far different in character from
anybody's attitude toward Kodak or GM.

While it is not the intent here to do any
kind of an anti-IBM number, it is nevertheless
necessary to attempt to round out the one-sided
picture that is projected outside the computer
world. In what follows there is no room to try
to give a balanced picture. Because IBM can
speak for itself, and does so with many voices,
it is more important to indicate here the kinds
of criticisms which are commonly made of IBM
by sophisticated people within the industry, so
that IBM-worshipers will have some idea of what
bothers people. But of course no attempt can
be made here to judge these matters: this is
just intended as source material for concerned
citizens.

—

THE GOOD NEWs AND BKD NEWs AROUT IBM

First, the good news

Now for the bad news ...

They offer many computer pro- These programs are not necessarily
grams for a variety of purposes. set up the way you would want them.
(But if you take the trouble to adapt

to them, you'll probably never get

back.)

The programs favor card or
card-like input and. to date, strongly
discourage time-sharing and widespread
convenient terminal use by untrained
people.

IBM programs are also notoriously
inefficient. (That way you have to use
bigger machines for longer.)

A company or governmental agency The courses indoctrinate with the IBM
can get immense amounts of "help" outlook, and the planted people spread
and "information" from IBM, which it. Moreover. both mechanisms help
offers free courses, even IBM 1BM spot the people they can work with
people on "released time" to look to make a big sale-- and (it is alleged
over the problems on the premises. by some) those who stand in the way.

IBM offers various kinds of com-

patibility among its systems. It always seems to cost extra.

IBM equipment is rugged and
durable, and their repairmen
or "field engineers" struggle
with great diligence and alacrity

to keep it running. You may not like the way it runs.

1. SOCIAL ASPECTS OF IBM.

It is perhaps in the social realm, including
its ideological character, that a lot of people
are turned off by IBM,

IBM has traditionally been the paternalistic
corporation. (Paternalistic corporations were
some kind of big philosophical issue to people
in the fifties, but nobody cares anymore. Anyway,
the rest were perhaps inconsequential compared
to IBM.) Big 1BM towns not only have a Country
Club (no booze), but a Homestead for the comfort
of important corporate guests. There are dress
codes (although non-white shirts and below-the-
collar hair are now allowed) , and yes, codes
of private behavior (now subdued). These irritate
people with libertarian concerns. They do not
bother employees, evidently. because employees
knew what they were getting into

Generalizations about IBM people obviously
cannot be very strong. Obviously there is going
to be immense variation among 265,000 people,
half of whom have college degrees: but of course
one of the great truths of sociology is that any
non-random group has tendencies.

More than that in this case. In a way IBM
people are an ethnic group. Impressive indeed
are the general energy and singlemindedness
of the peaple, galvanized by their certainty that
IBM is true, good and right, and that the IBM
way is the way. This righteousness is of course
a big turn-off for a lot of people. Perhaps it
leads in turn to the most-heard slurs about {BM
people, that they are brainwashed or provincial.

NAJOR I8M COMPUTERS AT A GlkuCE

1950s (TUBES)

650 (Decimal) 700 Series
701
762 (decimal) \'
705 (decimal) 704 (36 bits)

709

EARLY 1960s
(TRANSISTORS !}
7070 7040 7090
1620 7074 7044 7094
(decimal
minicomputer) /

1400 series (decimal,
accounting-oriented}
1401, 1410...

/
MID-1960s \ g7
(INTEGRATED v
CIRCUITS) 360 Series
(32-bit as well as decimal)

1130/1800 Series 20, 25, 30, 40. 44, 50, 65, &7,
(18 bits) I 75, 85, 90, 91...

STRETCH
{64 bits)

1870s
("MEDIUM-SCALE
INTEGRATION"} 370 Series
125, 135, 145, 155, 165, 158, 195...
System 3

{Variable)
System 7

(16 bits)

. The same slick marketing could be applied to any other industry.
But it wouldn't be IBM. Nowhere else could the mystery of the subject
be met and enhanced with so many more mysteries.

PROVINCIAL?

There would seem to be no question that
IBM people are comparatively conservative and
conventional. This partly because that's who IBM
hires (though they reportedly urge tolerance of
the unusual employee in a training film, "The Wild
Duck") . A huge number of IBM people never
worked for anybody else; obviously this affects
the perspective, like staying at one university
all your life, or in one city.

It may also be that because IBM places sach
a premium on dependability and obedience, new
‘ideas (and the abilities needed to generate them)
naturally run into a little trouble. Some critics
find among IBM people a heavy concern with con-
ventional symbols of achievement, and (unfor-
tunately) seeing the world stuck all over with
conventional labels and Middle American stereo-
types.

Some of the most amusing material on this
comes from an odd source: a writer named
Heywood Gould who, all unprepared, became a
consultant to IBM, earned unconscionable amounts
of money ($40,000 in six months), and lived to
write a very funny and observant book about it
(see Bibliography) .

But it is necessary on these matters to see
how difficult things can be for IBM people. To be
identified as an IBM person is something like wear-
ing a ring in your nose, a yarmulka or a halo:
an entrapment in a social role that makes the indi-
vidual's position awkward among outsiders. IBM
people often have to take guff at parties, unless
they are IBM parties. Defensiveness may account
for some of the Overdo, and some of the clannish-
ness.

BRAINWASHED?

It is true that IBM people are essentially in
their own world. One theorv is that compart-
mentalization within the firm (rather visible in
their designs) may tend to stifle. Indeed, because
IBM people can expect to be briefed and schooled
in every technical matter they will need to know
for a given assignment, the incentive to follow
technical developments through outside magazines
and societies may be reduced. Between Think
magazine and corporate briefings, it is possible
for IBM people to be comparatively (or even com-
pletely) unaware of innovations elsewhere in the
field, except as these new developments are
presented to them within the organization. In
this light it is easy to understand the ibmers'
sense of certainty that their firm invented every-
thing and is at the forefront.

Of course many fine research efforts do go on
there, in considerable awareness of what's hap-
pening elsewhers. Particular individuals at IBM
have done excellent research on everything from
cemputer hidden-line imaging to the structure of
the genetic code and computer-synthesized holo-
grams. APL itself {see pp.72-3), as developed
by Iverson at Harvard and later programmed by
him at IBM, is another example of sophisticated
individual creativity there. So it's entirely
possible. But IBM certainly has no monopoly on
understanding or creativity, and IBM-haters
sometimes talk as if the reverse is true

I hope to be able to report in future
editions of this book that IBM has moved

firmly and credibly toward making its sys-]

tems clear and simple to use, without re-
requiring laboricus attention to needless
complications and oppressive rituals.

It's still possible.

One of the things we often forget is ~—

that public-spirited corporations can be
reached, they do listen; and I[BM is nothing
if not public-spirited-- except when it
comes to the design of its systems,

I hope that this book will help

people who are inconvenienced by computer
systems to understand and pinpoint what
they think is wrong with the systems-- in
their data structure, interactive properties,
or other design features-- and that they
will try to express their discontents intel-
ligently and constructively to those res-
ponsible. Including, where appropriate,
International Business Machines Corporation,

Armonk, NY.

2. SALES TECHNIQUES.

It is IBM's alleged misbehavior in pursuit
of sales that has drawn some of the strongest
criticism within the industry. as well as consid-
erable litigation. Their "predatory pricing"

(a term used by the judge in the recent Telex
decision), and other mean practices, are (whe-
ther true or false] folklore within the industry.

These accusations are well summarized
by "Anonymous" in a recent article (see Biblio-
graphy). Basically the accusations against
IBM's sales practices are that they play dirty:
if you, say, the computer manager in a business
firm. want to buy equipment from another out-
fit, IBM (so the story goes) will go over your
head to your boss, accuse you of incompetence,
try to get you fired if you oppose them, and
Heaven knows what else. Anonymous claims
that various forms of threat, intimidation, "hard-
sell scare tactics" and "behind-the-scenes man-
ipulation” are actually standard practice in IBM
sales; he or she alleges various instances in
certain municipalities.

Such behavior is emphatically denied,
though not in relation to that article, by Board
Chairman Cary, in a recent letter to Newsweek
(see Bibliography). Cary emphasizes the impor-
tance of IBM's 76-page Business Conduct Guide-
lines. Whether these are publicly examinable

is not stated.

These charges were also taken up con-
cretely in a recent survey of computing managers
done by Datamation (summarized by McLaughlin
in "Monopoly Is Not a Game:" see Bibliography).
In Datamation's analysis of this survey, the
managers did not seem to agree with these
charges against IBM. However, it must be
noted-- and this seriously calls into question
the entire survey as analyzed-- that out of 1100
panelists to the questionnaire, Datamation only
considered 389 responses "usable," partly (it is
stated) because many did not give data allowing
themselves to be identified. Considering the
widespread fear of IBM in the field, this may

"When we went from IBM to
National Cash Register, it was like
the difference between night and day."

Retired hardware executive,
talking about inventory programs

{Incidentally. it is amusing to note that
even in this remaining company, in terms of
‘"performance per dollar," the managers surveyed
(and surviving the weedout) ranked the top
three companies as DEC, Burroughs and Control
Data. IBM was worst out of 8. Obviously
service counts for a lot.}

An interesting view on IBM's sales ethics
was expressed recently by Ryal R. Poppa.
president of Pertec Corp.

“In the past. when there have been sales
situations where 'you can't honor the
policy and win the deal,' IBM has violated
the policy with the practice, he said.”

However, he believes that situation is changing
under 1BM's new management, so that the guide-
lines will be observed in the future. ("Poppa
Sees Several 1BM Changes,” Computerworld,

21 Nov 73, 29.)

The people who take these matters of IBM
sales practices most seriously-- IBM's competi-
tors-- now have their own organization, the
Computer Industry Association. This is an asso-
ciation of computer companies, which has as
its intention the "establishment and preservation
of a sound and viable U.S_ computer indusiry,
free and open competiion " Empha-
sis theirs. Translation: they're out to get IBM.
President Dan L. McGurk, formerly of Xerox
Data Sygtems. has blood in his eye. Member-
ship is ‘open only to computer companies, but
their newsletter On Line is available to indivi-
duals (see Bibliography). Anyone seriously
interested in these matters is referred to them.

3. TECHNICAL DECISIONS AND DESIGNS
A. Prologue.

Part of the myth of IBM's corporate perfec—
tion is based on the notion that technical matters
somehow predominate in IBM's decisions, and
that IBM's product offerings and designs thus
emerge naturally and necessarily and inevitably
from these consideraticns. This is rather far
from the truth.

IBM presents many of their actions as tech-
nical, even as technical breakthroughs, when
in fact they are strategic maneuvers. The an-
nouncement of a new computer, for example,
such as the 360 or 370, is usually made to
sound as if they have invented something special.
while in fact they have simply made certain
decisions as to "which way they intend to go"
and how they plan to market things in the next
few years.

have strongly biased the poll in favor of 1BM

L

IBM controls the industry principally by

controlling its customers. Through various
mechanisms, it seems to enforce the principle
that "Once an IBM customer, always an IBM
customer." With an extracrdinary degree of
control, surely possessed in no other field by
any other organization in the free world, it
dictates what its customers may buy, and what
they may do with what they get. More than
this: the exactions of loyalty levied upon IBM's
customers are similar, in kind and degree, to
what it demands of its own employees. IBM
makes the customer's employees more and more
like its own employees, committing them as
individuals, and effectively committing the com-
pany that buys from it, to IBM service in
perpetuity.

Here are some of the ways this system of
control seems to work. We are not saying here
that this is necessarily how IBM plans it;
rather, these are the virtual mechanics, virtual
in the old sense; this is how it might as well
be working. In the anthropological sense this
is a "functional" analysis, showing the tie-ins
rather than the actual detailed thought processes
that occur. And even if these are reaily the
mechanics, perhaps IBM doesn't mean them to be.
It might just somehow be a continuous accident.

A. Interconnection and compatibilities.

IBM acts as if it does not want competitars
to be able to connect their accessorigs to its
computers. It's as though GM could design the
roads so as to prevent the passage of other
vehicles than its own.

This is done several ways. First, IBM
has sometimes used contractual techniques to
prevent such interconnections to its systems,
either forbidding other things to be attached
(or at least slapping on extra service charges
if they are}, or declaring that it would not
be responsible for overall performance of such
a setup, effectively withdrawing the hardware
juarantee that is such a strong selling point.

Secondly, IBM does not tell all that needs
to be known in arder to make these intercon-
nections-- the details of the hardware interfaces.

Finally, IBM can simply decree, perhaps
claiming technical necessity, that interconnection
is impossible. For instance, IBM said for a
time that their latest big program, "VS," or
Virtual System, wouldn't work (translation:
would not be allowed) if competitive memories
were used on the computer.

Now, there are many manufacturers who
think this is very wrong of IBM; who believe
they should have the right to sell accessories
and parts-- especially core and disk memories--
to plug onto IBM's computers. 1t has been
generally possible for these other manufacturers
to work these interconnections out awhile after
the computer comes out on the market, but
it's getting more difficult.

Thus the Telex Decision of September 17,
1973, in which it was decreed by the judge that
IBM would have to supply complete interface
information promptly when introducing a new
computer, was a source of great jubilation in
the computer field. However, that part of the
judgment has since been cancelled.

Much the same problem €éxists in the soft-
ware area. IBM is less than interested in
helping its competitors write programs that hook
up to IBM programs, so the details of program
hookup are not always made clear. Here. too,
many smaller companies insist they should be
made to do it

B. Control and guidance of what the customer
can get.

To a remarkable degree, if you are an
IBM customer, you practically have to buy what
they tell you. This IBM manages by an intri-
cate system of fluctuating degrees of sales and
support and contractual dealing. The IBM cus-
tomer always has several options; but these are
like forced cards. IBM is always introducing
and discontinuing products, and changing prices
and contractual arrangements and software op-
tions in an elaborate choreography, which applies
calculated pressures on the customer. IBM has
a finely-tuned system of customer incentives by
which it controls product phasing, to use the
polite term, or planned obsolescence, as some
people call it.

(Ryal R. Poppa, president of Pertec Corp.
predicts that IBM customers will now be re-
quired to switch over to new products every
five or six years, rather than every seven,
which Poppa contends has been the figure.
("Poppa Sees Several IBM Changes," Computer-
world, 21 Nov 73, 29.)

Programs, especially, are available with
different degrees of approval from IBM. The
technique of "support” is the concrete manifes-
tation of approval. A supported program is
one which IBM promises to fix when bugs turn
up. With an unsupported program, you're on
your awn, God has forgotten you. Because so
much of IBM's virtue lies in the strength and
fervor of its support, the use of unsupported
programs, or unsupported features of supported
programs, is a difficult and risky matter, like
driving without a map and a spare tire, or even
going into the Himalayas without gloves. Effec-
tively the withdrawal of support is the death
knell of any big program, such as TSS/360,
even though customers may want to go on using
them.

Availability of products is in general a
matter of exquisite degree. [t's not so much
that you can or can't get a particular thing,
but that the pricing and available contracts at
a given time exert strong pressure to put you
where they have chosen within their currently
featured product line. Moreover, extremely
strong hints are always available; the salesman
will tell you what model of their computers is
likely to be a dead end, or, on the other hand,
what model is likely to offer various options
and progressive developments in the near future.

Some things are half-available, either as
"RPQs" (an IBM term for special orders--
Request Price Quotationr), or available to
sophisticated customers at IBM's discretion.

With all the degrees of availability, it is
easy for IBM to open or close by degrees
various avenues in which customers are inter-
ested .

Also. different sizes of computer will or
won't allow given programs or desirable program
features. Many IBM customers have to get bigger
computers than they would otherwise want be-
cause a given program-- for instance, a COBOL
compiler with certain capabilities-- is not offered
by IBM for the smaller machine. Indeed, an
elaborate sizing scheme exists for matching the
machine to the customer-- or, a cynic might say,
assuring that you can't get the program features
you cught to be able to get unless you get a
larger computer than you wanted.

What it boils down to is that you, the
customer, have few genuine options. especially
if your firm is already committed to doing cer-
tain things with a computer. And when [BM
brings out a new computer, the prices and
other influences are exactingly calculated to
make mandatory the jump they have in mind to
the new model.

{This planning of customer transitions
does not always work. When the 370 was intro-
duced, for instance. IBM had in mind that com-
panies with a certain size of 360 would trade up
to a bigger 370. In some cases users traded
down to a smaller 370, which was able to do the
same work for less money, to the acute bother
of IBM.)

C. Having to do things just their way.

IBM systems and programs are set up to
do things in particular ways. To a remarkable
degree, it is difficult to use them in ways not
planned or approved by IBM, and difficult to
tie systems and programs together. Programs
and features which the casual observer would
suppose ought to be compatible, tend not to be.
For some reason compatibility always tends to
cost extra. It is as though the compatibility of
equipment and programs were planned by IBM
as much as their product line.

Effectively the IBM customer tends to be
frequently trapped in a cage of restrictions.
whether this cage is intentionally created by
IBM or not. One is reminded of the motto of
T.H. White's anthill in The Once and Future King:

THAT WHICH IS NOT FORBIDDEN !S COMPULSORY .

The degree to which these restrictions are
manipulated or intentional is, of course, a matter
of debate.

D. Captive bureaucracies running in place?

Perhaps the most unfortunate thing about
IBM (from an outsider's point of view) is that
effectively their systems can only be used by
bureaucracies whom they have trained. From
keypunch operator up to installation manager,
all are effectively enslaved to curious complex-
ities that keep changing. The ever-changing
structure of OS, and its quaint access methods,
is just one example. It might even seem to the
outside cobserver that IBM's game, intentional
or not, is to keep things difficult and intricately
fluid to retain utter control. In other words,
it is as though they fostered a continual turnover
of unnecessary complications to keep a captive
bureaucracy running in place, People who they
have indoctrinated tend not to buy opponents’
computers. People who are immersed in the
peculiarities of IBM systems, and busy keeping
up with mandatory changes, do not get uppity.
They are too busy, and the investment of their
time and effort is too high for them to want to
change.

Anti-IBM cynics say that a lot of the
work invaolved in working with IBM computers
is self-generated, arising from the unnecessary
complexities of 0S/360. JCL, TCAM and so on.
But of course that cannot be evaluated here.

PROSPECTS

These remarks should clarify the bleakness
of the prospect for man's future among computers
if IBM's system of control really does work this
way, and if it is going to go on doing so. Be-
cause it means the future that some of us hope
for-- the simple and casual availability to indi-
viduals of clear and simple computer systems
with extraneous complications edited away-- may
be foreclosed if they can help it.

Let's all hope, then. that these things
turn out not to be really true.

—~— 4
... IBM in its infinite wisdom
has decreed that this is the way
we must go."
Cynical computer
installation manager,

quoted in Computerworld,
22 Aug 73, p. 4.

54

An interesting example of an IBM non-
breakthrough was the dramatic announcement in
1964 of the 360 computer, portrayed as a machine
which would at last combine the functions of
both "business" computers and "scientific” com-
puters. But other companies, such as Burroughs
(with the 5500) had been doing this for some
time. The quaint separation of powers between
scientific computers (with all-binary storage of
numbers) and business computers (decimal
storage} was based only on tradition and mar-
keting' considerations, and was otherwise unde-
sirable. In amalgamating the "two types,” IBM
was only rescinding their own previous un-
necessary distinction. The drama of the an-
nouncement derived in large measure from the
stress they had previously laid on the division.
{Fortune ran an interesting piece on the decision
struggles preceding the introduction of the 360
computer, and the internal arguments as to whe-
ther there should be one line of computers or two.
See the five-billion-dollar- gamble piece, Biblio-
graphy.)

This ties in closely with another interes-
ting aspect of the IBM image, the public notion
that IBM is a great innovator, bringing out
novel technologies all the time. It is well known
in the field that. they are not: IBM usually does not
bring out a new type of product until some .other
company has pioneered it. (Again remember
the earlier point, that the product offering is a
strategic maneuver.} But of course such facts
do not appear in the promotional literature, nor
are they volunteered by the salesman.

The expression for this in the field is
that IBM "makes things respectable.” That is,
customers get that reassured feeling, when IBM
adds other people's innovations to their product
line, and decide it's okay to go ahead and rent
or buy such a product. (This also sometimes
kicks business back to the original manufacturer.)

A few examples of things that were already
on the market when IBM brought them out, often
making them sound completely new: transistorized
computers (first offered by Philco), virtual mem-
ory (Burroughs). microprogramming (introduced
commercially by Bunker-Ramo) .

This is not to say that IBM is incapable of
innovation: merely that they are never in a
hurry about it. The introduction of IBM pro-
ducts is orchestrated like a military campaign,
and what IBM brings out is always a carefully-
planned, profit-oriented step intended not to
dislocate its product line. This is not to say
that they don't have new stuff in the back room,
a potential arsenal of surprises of many types.
But it is probable that most of them will never
be seen. This is because of IBM's "impact"
problem.

Unique in IBM's position is the problem of
fitting new products into the market alongside
its old ones. Its problem is much worse, say,
than that of Procter § Gamble. The problem is
not merely its size and the diversity of its
products, but the fact that they may interfere
with each other ("impact" each other, they say)
in very complicated ways. A program like
their Datatext, for example, which allows cer-
tain kinds of text input and revision from ter-
minals, may affect its typewriter line. These
are no small matters: the danger is that some
new combination of products will save the cus-
tomers money IBM would otherwise be getting.
Innovations must expand the amount IBM is
taking in, or IBM loses by making them.

These complications of the product line
in a way provide a counterbalance to IBM's fear-
some power. The corporation has an immense
inertia based on its existing product line and
customer base, and on ways of thinking which
have been carefully promulgated and explained
throughout its huge ranks, that cannot be
revised quickly or flippantly.

Nevertheless it is remarkable how at
every turn-- notably when people think IBM
will be set back-- they manage to make policy
decisions or strategic moves which further con-
solidate their position. Often these seem to
involve restricting the way their computers will
be used (see box, "IBM's Control.")

(The most ironic such countermove by IBM
occurred a few years ago with the so-called
"unbundling” decision. IBM at last agreed (on
complaint from other software firms) to stop
giving its programs away to people renting the
hardware. Glee was widespread in the industry,
which expected IBM to lower computer prices
in proportion to what it would now charge for
the software. Not at all. IBM lowered its com-
puter prices by a minuscule amount and slapped
heavy new prices on the software-- often
charges of thousands of dollars per month.)

A persistent rumor is that IBM fires
all its salesmen in a geographic

area if a key or prestige sale is

"lost," as when M.I.T.'s Project

MAC switched over to General Electric
computers in the sixties, or when
Western Electric Engineering Research
Center passed over IBM computers

to get a big PDP-10.

Much as some people would like
to believe these stories, there seems
to be no documentation. You would
think one such victim would write
an article about it if it were true,

1

Finally, there is the popular doctrine of
IBM's infallibility. This, too, is a ways from
the truth. The most conspicuous example was
something called TSS/360.

TS8S/360 was a time-sharing system--
that is, the control program to govern one
model of the 360 as a time-sharing computer.
According to Datamation {"IBM Phases Out Work
on Showcase TSS Effort," Sept. 1, 1971, 58-9),
over 400 people worked on it at once for a total
of some 2000 man-years of effort. And it was
scrapped, a writeoff of some 100 million dollars
in lost development costs. The system never
worked well enough. Reputedly users had to
wait much too long for the computer's responses,
and the system could not really compete with
those offered elsewhere.

The failure and abandonment of this pro-
gram is thus responsible for IBM's present non-
competitive position in time-sharing; customers
are now assured by IBM that other things are
more important. IBM-haters thank their stars
that this happened: Cynics think it conceivable
that high-power time-sharing was dropped by
IBM in order to shoo its customer base toward
areas it controlled more completely.

Two other censpicuous IBM catastrophes
have been specific computers: the 360 model 90
in the late sixties, and a machine called the
STRETCH somewhat earlier. Both of these
machines worked and were delivered to cus-
tomers. (Indeed, the STRETCH is said by some
to have been one of the best machines ever.}
But they were discontinued by IBM as not suf-
ficiently profitable. Therein is said to have
been the "failure.” (However, it has been al-
leged in court cases that these were "knockout"
machines designed to clobber the competition
at a planned loss.)

B. Negative views of IBM systems.

In the technical realm, IBM is widely un-
loved because many people think some or all of
their computers and programs are either poor,
or far from what they should be. The reasons
vary.

Some of the people feeling this way are
IBM customers, and for a time they had an or-
ganized lobby, called SHARE (which also facil-
itated sharing of programs). Recently, however,
SHARE has become IBM-dominated, a sort of
company union, according to my sources.

The design of the 360, while widely ac-
cepted as a fact of life, is sharply criticized
byLi'n’any (See "What's wrong with the 3607",
p-1i)

IBM's programs, while they are available
for a broad variety of purposes, are often notor-
iously cumbersome, awkward and inefficient,
and sometimes dovetail very badly. However,
the less efficient a program is, the more money
they make from it. A program that has to be
run for an hour generates twice as much revenue
than if it did its work in thirty minutes; a pro-
gram that has to be run on a computer with, say,
a million spaces of core memory generates ten
times the revenue it would in two hundred thou-
sand.

IBM programs are often thought to be
rigid and restrictive.

The complex training and restrictions
that go with IBM programs seem to have
interesting functions. {See box, "IBM's Control.")

C. Theories of IBM design.

The question is, how could a company
like IBM create anything like the 360 (with its
severe deficiencies) and its operating system or
control program OS (with its sprawling compli-
cations, not present in competitors' systems)?
Three answers are widely proposed: On Purpose
{the conspiracy theory}, By Accident (the
blunder theory), and That's How They're Set
Up (the Management Science theory). These
views are by no means mutually exclusive.

The Management Science theory of IBM
design is the only one of these we need take up.

The extensive use of group discussion and
committee decisions may tend to create awkward
design compromises with a certain intrinsic
aimlessness, rather than incisively distinct and
simple structures. (See Gould's marvelous
chapter, "The Meeting," 58-80.)

Their use of immense teams to do big
programming jobs, rather than highly motivated
and especially talented groups, is widely viewed
as counterproductive. For instance, Barnet A.
Wolff, in a letter to Datamation (Sept. 1, 1971,
p. 13) says a particular program

"remains ineffficient, probably because of
IBM's unfortunate habit of using trainees
fresh out of school to write their

systems code."

There may alsc be something in the way that
projects are initiated and laid out from the top
down, rather than acquiring direction from
knowledgeable people at the techmical level,
that creates a tendency toward perfunctoriness
and clunky structure.

Thus there may very well be no intentional
policy of unnecessary complication (see Box,
"IBM's Control"). But the way in which goals
are set and technical decisions delegated may
generate this unnecessary complication.

THE QAfTOLY, INSIDE SYoRY

It is unfortunate that Rodgers'
remarkable book does not follow the
details of IBM's computer designs and
politics in the computer age, i.e.,
since 1955. Later work, perhaps
helped by some Pentagon Papers, will
have to relate the decision processes
that occurred in this unique national
institution to the systems it has
produced and the stamp it has put
on the world.

QUICKE HISTRY
OF LBM

IBM appeared in 1911 as the con-
solidation of a number of small companies
making light equipment, under the name
C-T-R Company (Computer-Tabulating-
Record}. This was prophetic, consid-
ering how aptly it described the com-
pany's future business, and especially
prophetic considering that today's

stored-program computer was undreamed

of at that time.

According to William Rodgers'
definitive company biography Think,
the company's creator was a shrewd
operator named Charles R. Flint,
dashing entrepreneur and former gun
runner to the South American republics,
who in his shrewdness brought in to
run the company an incredibly talented,
fire-breathing and self-righteous indi-
viduval named Thomas J. Watson, even
though Watson at that time was under
prison sentence for his sales practices
at another well-known company. The
sentence was never served, and Watson
went on to preside for many years
over a corporation to which he gave
his unique stamp.

Watson arises from the pages of
Think as a sanctimonious tyrant,
hard as nails yet reverently principled
in his words; the pillar of fervid,
aggressive corporate piety.

IBM was totally Watson's
creation. The company became what
he admired in others, a mechanism
totally obedient to his will and imple-
menting his forceful and inspiringly
rationalized convictions with alacrity .
As the Church is said to be the bride
of Christ, IBM might be characterized
as the Bride of Watson, molded to the
styles of demandingness, pressure,
efficiency and pietism which so char-
acterized that man. But the ideas
flowed from Watson alone, except for
a few confidantes who received his
nod. The company is vastly bigger
now, and slightly more colorful, in a
muted sort of way; but it is still the
stiff and deadly earnest battalion of
his dream.

Because of Watson's background
as salesman, he made Sales the apex
of the corporation. The salesmen had
the most prestige within the company
and could make the most money; below
that was administration, below that,
technical staff.

Watson eliminated the meat-slicing
machines, and pushed the product line
based on punched cards developed by
IBM's first chief engineer, Herman
Hollerith. According to Rodgers, it
was impetus from the Depression, and
the new bookkeeping requirements of
Roosevelt's remedies, that skyrocketed
the firm uniquely during the depths of
general economic catastrophe, till
Watson came to draw the highest salary
of any man in the nation. In 1934 his
income was $364,432 (Will Rogers, not
the author of Think, was second with
$324,314) . Watson had neatly arranged
to get 5% of IBM's net profit,

While IBM participated in the
creation of certain early computers, it
is interesting that Watson dismissed
Eckert and Mauchly when they came
around after World War II tring to get
backing for their ENIAC design, in
certain ways the first true electronic
computer. Eckert and Mauchly went
to Remington Rand, and the resulting
Univac was the first commercial
computer.

However, IBM bounced back
very well. If there was one thing they
knew how to do it was sell, and when
they brought out their computers it
was practically clear sailing. (The
Univac I was the first of many compu-
ters to be delayed and boggled in the
completion of its software, and this
considerable setback helped IBM get
the lead very quickly; they have
never lost it since.)

In the early sixties the IBM 7080
and 7094 were virtually unchallenged
as the leading scientific computers of
the country. But IBM in the late six—
ties almost relinquished the fields of
very big computers and time-sharing
to other companies, and their compu-
ters are not regarded as innovative.
Nevertheless, IBM's Systems 360 and
370, despite various criticisms, have
been very successful; thousands of
them are in operation around the globe,
far more than all their rivals' big
computers all put together. This des-
pite the fact that some of these systems
have failed, including the big Mode! 91
(an economic failure) and the TSS/360
time-sharing program, a technical
catastrophe.

They have from time to time
been accused of unfair tactics, and
various antitrust and other actions
(see "Legal Milestones" box) have
required IBM to change its arrange-
ments in variols ways. One decree
required them to sell the computers
that before they had only rented;
another decision, to."unbundle," or
sell computers separately from their
programs (previously "given" away
with the computers they ran on), is
widely believed to have prevented
government action on the same
matter. Showing characteristic
finesse, IBM thereupon lowered the
computer prices almost imperceptibly,
then slapped heavy price-tags on
the programs that had previously
been free.

Recent moves by the government
have suggested an especially serious
and far-reaching anti-trust suit against
IBM, possibly one that might break the
company up, with its separate divisions
going various ways. However, in
today's climate of cozy relations be-
tween business and government, it is
hard to imagine that such matters
would not be settled to IBM's liking .
This lends a curious tint to a remark
one IBM person has made to the author,
to wit, that maybe IBM wants to be
broken up. That might be one way of
reducing the unwieldiness and inter-
dependency of its product line; in
addition to reducing its vast, under-
utilized personnel base. (Another
angle: Acting Attorney General Bork
has expressed the view that IBM is
big only because its products and
management are wonderful, so the
antitrust case may simply evaporate
during the rump days of the Nixon
incumbency.)

An interesting aspect of IBM publicity is its stress on status.
Publicity photographs often show a subordinate seeking advice
from a superior. IBM ads appeal to the corporation president
in all of us-- either Going It Alone (taking a long walk over an
Executive Decision) or soberly directing a lesser employee.

In one extraordinary case, we saw worshipful convicts at the
feet of a Teacher implausibly situated in the corner of a prison

yard.

‘KC ;éo am{ gfakclwc\lti“.o-\

IBM announced a number of worthy objectives when the 360
line was announced in 1964. IBM should certainly be thanked for
at least their lip service to these noble goals.

1. 'One machine for all purposes, business and scientific.’
(Thus the name "360," for the "full circle" of applications.)
By "business" this mainly meant decimal, at four bits a digit.
Actually this meant grafting 4-bIt decimal hardware to an other-
wise normal binary computer, and making both types of users share
the same facility.

2. 'Information storage and transmission will be stan-
dardized,' The 360 was set up to handle information 4 bits at
a time, 8 bits at a time, 16, 32, and 64 bits at a time. (The
preceding standard had been 6, 18 and 36 bits at a time.)

In their 360 line, IBM also replaced the industry's stan-
dard ASCII code with a strange alphabetical code called EBCDIC
("Extended Binary Coded Decimal Information Code'), ostensibly
built up from the 4-bit decimal code (BCD), but believed by-

3. '360s will all look alike to the program; thus programs
can be moved freely from machine to machine.'

Unfortunately this compatibility has been undermined by
numerous factors, especially the variety of operating systems,
including half a dozen major types, and the language processors,
intricately graded according to computer size. Both these fac-
tors tend to make changes necessary to move programs between com-
puters., While one effect of this "standardization" has indeed
been to facilitate the moving of programs from small computers
to big ones, a more important effect has perhaps been to make it
hard to move from a big computer to a smaller one. Note The
usefuIness of this apparent paradox to IBM's marketing.

The secret of it all, of course, lies in IBM's keen under-
standing of how to sell big computers. The comptroller, or
somebody like him, generally makes the final decision; and if
he is told that the one computer will run "all kinds" of pro-
grams, that naturally sounds like a saving. Shades of the F-

cynics to have been created chiefly to make the 360 incompatible 111. (Businessmen's trust and respect for IBM is discussed
clsewhere in this article.)}

with other systems and terminals.

THE Bl QUESTIONS

Between the trade press and dozens of acquaintances
in the field, almost everything I hear about IBM and its
products is negative (say five or ten to one) -- except from
people who work or have relatives there.

Perhaps it's just sour grapes. Or the authority-
hating character of research types. Or selective reading.

Or perhaps there really is something sinister.
T
The major questions are these.

1. How clean is their salesmanship?

2. Are their systems unnecessarily difficult or
cumbersome on purpose?

3. How deep is their system of entrapment and
forced commitment of the customer? How
necessary are the de-standardizations and
the constant changes?

4. Do they have a final liberating vision? Do they
really, after all, intend to bring about a day
when life is easier for people? When the
difficulties of present-day computer systems,
especially theirs, wither away? I think that
history's judgment on IBM in our time
may narrow down to that simple question.

(In this light it is not hard to understand
IBM's stand on software copyrights vs. patents.
IBM is against programs being patentable, which
would cover abstracted properties, but argues
in favor of copyright, whose protection is
probably more limited to the particulars of a
given program. If they have their way, it would
be assured that IBM could use any ingenious
new programming tricks without compensation,
whereas all unnecessary complications of bulky,
cumbersome software would be covered in
entirety by copyright.}

Finally, it has not been demonstrated that
IBM has any general ability to make systems
conceptually simple and easy to use. (Two
good examples of hard systems are the Mag
Tape Selectric and Datatext-- easy for program-
mers, but hardly for secretaries.) There seems
to be no emphasis on elegance or conceptual
simplicity at IBM. Those who adopt such a
philosophy (such as Kenneth Iverson) de so
on their own,

As mentioned earlier, this has something
to do with the fact that individuals generally
use IBM's systems because they have to, being
employees or clients of the firms that rent IBM
equipment, so there is no impetus to design
programs or systems to run on simple or clear-
minded principles, or dress out intricate systems
so they can be used easily.

4. THE IMAGE.

It is hard to analyze images, corporate or
personal., They are often received in such differ-
ent ways by different populations. But there may be
a commonality to the IBM image as generally seen.
The Image of IBM involves some kind of cold magic,
a brooding sense of sterile efficiency. But other
things are percolating in there. If we slide that
connotation of efficiency aside, the IBM image
seems to have two other principal components:
authoritarianism and complacency. It is this mix-
ture that longhairs will naturally find revolting .
This same combination, however, may be exactly
what it is that appeals to business-management
types.

—

! IF YOU REALLY WANT IT. ..

you can get character-by-character
responding systems on IBM computers,
The new Stock Exchange system uses a
"Telecommunications Access Method"
permitting non-IBM terminals to respond

THE FUTURE
What will IBM do next?

Speculation is almost futile, but necessary
anyhow. The prospects are fascinating if not
terrifying.

No one can ever predict what IBM will do; but
trying to predict IBM's actions—- IBM-watching is
something like Kremlin-watching-- is everybody's
hobby in the field. And its consequences affect
everybody. With so many things possible, and
determined only in the vaguest way by technical
considerations, the question of what IBM chooses
to do next is pretty scary. Because whatever
they do we'll be stuck with. They can design our
lives for the foreseeable future.

We know that in the future IBM will announce
new machines and systems, price changes (both up
and down) in fascinating patterns, rearrangements
of what they will "support," and changes in the
contracts they offer (see box, "IBM's Control"} .
Occasional high-publicity speeches by IBM high
officers will continue to be watched with great care.
But mainly we don't know.

IBM's slick manufacturing capabilities mean
that practically any machine they wanted to make,
and put on a single chip, they could, and in a
very short time. (The grapevine has it that the
Components Division, which makes the computer
parts, has bragged within the company that it
doesn't really need the other divisions any more
-- it could just put whole computers on teeny
chips if it wanted to.)

In this time of the 370, things are for the
moment stable. The 370 computer line is still their
main marketing thrust. Having sold a lot of 370
computers (basically sped-up 360s), their idea is
at the moment to sell conversion jobs to adapt the
370 to run the new "Virtual System" control pro-
gram (VS or OS/VS or various other names}. This
system (which is, incidentally, widely respected)
makes core memory effectively much larger to
programs that run on it. This effectively encour-
ages programmers to use tons of core, by means
of virtual memory; essentially getting people in
the habit of programming as if core were infinite.
This extension of apparent memory size distracts
from any inefficiencies of both locally written pro-
grams and IBM programs, thus tending to increase
use and rental charges.

When that marketing impetus runs out we'll
see the next thing.

The other new IBM initiative is with smaller
machines, the System 3 and System 7, being pushed
for relatively small businesses. That is where they
see another new market. How easy and useful their
programs are in this area will be an important
question.

With the System 7, a 16-bit minicomputer
for $17,000, IBM has at last genuinely entered the
minicomputer market. (Balancing its speed and
cost against comparable machines, we can figure
the IBM markup as being about 50%, which is
typical.)

In addition, it is rumored that IBM might
put out a tiny business mini, to sell out of OPD.
(Datamation, Dec 72, 139.) But really, who knows.

In addition to this huge-memory strategy for
its big machines, and the starting foray into spe-
cialized mini systems, there is the office strategy
and "word processing."

IBM has conceptually consolidated its
various magic-typewriter and text services under
the name of "word processing," which means any
handling of text that goes through their machines.
This superficially unites their OPD efforts (type-
writers and dictation machines) with things going
on in DPD, such as Datatext, and allays inter-
divisional rivalries for awhile. Also, by stress-
ing the unity of the subject matter, it leaves the
door open for later and more glamorous initiatives,
such as hypertext systems (see "Carmody's System,"
flip side) .

In other words, the foot is in the door. Mr.

SHOULY INDIVIDUALS FEAR 18M 2

Even if it is true, as Anonymous says (see Bibliography)
that IBM intimidates people and keeps its enemies
from getting jobs at IBM-oriented establishments,
that's not the end of the world.

Grosch, Gould, Rodgers and McGurk are alive and working.

Extramural harassment like that employed by GM against

Nader, for example, has not been reported.

‘

END OF THE DINOSAURS?

To a very great extent, IBM's computer
market is based on big computers run in batch
mode, under a very obtrusive operating system.

Many people are beginning to notice, though,
that many things are more sensibly done on small
computers than on big ones, even in companies
that have big computers. That way they can be
done right away rather than having to wait in line.
Is this the mammal that will eat the dinosaur eggs?

On the other hand, a very unfortunate trend
is beginning to appear, an implicit feud within
large organizations, which may benefit IBM's big
computer approach. Those who advocate mini-
computers are being opposed by managers of the
big computing installations, who see the minis
as threatening their own power and budgets. This
may for a long time hold the minis back, perhaps
with the help and advice of computer salesmen who
feel likewise threatened. But there will be no
holding back the minis and their myriad offspring.
the microprocessors (see p. ‘-\L\). And the inroads
should begin soon.

(Others are growing to know and love true
high-capacity time-sharing as a way of life, like
that offered for DEC, GE and Honeywell machines.
This, too, may begin to have derogatory effects on
IBM's markets.)

Finally, it must be noted that almost all big
companies have computers, usually IBM computers,
and so an era of marketing may well have ended.

It may be possible for IBM to go on selling bigger
and bigger computers to the customers who already
have them, but obviously this growth can no
longer be exponential.

k GRos TRNY

Herb Grosch, now editorial director of Computerworld, is perhaps
IBM's worst enemy. Once he worked for old man Watson, and was the
only IBM employee allowed to have a beard. Now, among other things, he
gives speeches and testimony wherever possible about the Menace of IBM,
at conferences, at governmental hearings, and in letters to editors.

character-by-character, just as systems
for non-computer-people should.

Businessman has the idea that automatic typing
and things like that are IBM's special province.

Trying to use this input-output
program on your local IBM computer is
another problem, though. Aside from
program rental costs, there is the prob-
lem of its compatibility with the whole Few firms anywhere have the confidence
line of IBM software. Adaptations and to advertise generically & product which
reprogramming would probably be is made by others as well, as in IBM's
necessary up and down the line. __J "Think of the computer as energy" series.

Yet IBM's main computer sales strategy today is to stress the advan-
tages of big computers with lots of core memory (and persuade you you
don't want highly interactive systems or independent minicomputers) .

And the fundamental rule stating the advantages of big computers
is called Grosch's Law, formulated years ago by none other. See p.

A LITTLE GEM FROM THE IBM SONGBOOK

(Who says IBM doesn't encourage individualism?
To the tune of "Pack Up Your Troubles
in Your Old Kit Bag.")

"TO THOMAS J. WATSON, President, IBM"

Pack up your troubles-- Mr, Watson's here!
And smile, smile, smile.

He is the genius in our IBM

He's the man worth while.

He's inspiring all the time,

And very versatile-- oh!

He is our strong and able President!

His smile's worth while.

"Great organizer and a friend so true,"
Say all we boys.

Ever he thinks of things to say and do

To increase our joys.

He is building every day

In his outstanding style-- so

Pack up your troubles, Mr. Watson's here
And Smile-- Smile-~ Smile.

(As a nostalgic public service
Advanced Computer Techniques, Inc., of
Boston, gave away LPs of IBM songs at the
'68 SJICC. They might just have some left. .)

"THERE IS A WORLD ELSEWHERE."
-- Coriolanus

There is no way to escape IBM entirely. IBM
mediates our contacts with govarnment and medi-
cine, with libraries, bookkeeping systems, and
bank balances, But these intrusions are still lim-
ited, and most of us don't have to live there.

Thers are many computer people who refuse
to have anything to do with IBM systems. Others,
not so emphatic, will tell you pointedly that they
prefer to stay as far away from IBM computers
as possible. If you ask why, they may tell you
they don't care to be bothered with restrictive,
unwieldy and unnecessary complications (the JCL
language is usually mentioned). This is one
reason that quite a few people stick with minicom-
puters, or with firms using large computers of
other brands.

It is possible to work productively in the
computer field and completely avoid having to
work with IBM-style systems. Many people do.

IBN LEGHL MiLESTONES

The famous Consent Decree of January 1856. (In a consent decree,

NEW CHIPS. ..

1BM can put pretty much anything on a single
chip, to make a functioning machine the size of a
postage stamp; but so can a lot of other companies.

The question really becomes whether what
goes on that chip is a worthwhile machine that does
what people want.

-..BUT THE SAME OLD BLOCK?

It is by no means clear that IBM has any
general ability to make computer systems easy to
use.

This is a psychological problem.

As a corporation they are used to designing
systems that people have to use by fiat, and must
be trained to use, contributing to the captivity
and inertia of the customer base. Thus the notion
of making things deeply and conceptually straight-
forward, without special jargon or training, may
not be a concept the company is ready for.

SOME DIVISIONS OF IBM you may hear about

oPD Office Products Division. Typewriters, copiers.

DPD Data Processing Division., Computers and accessories.

FSD Federal Systems Division. Big government contracts:
NASA stuff, and who knows what.

ASDD Advanced Systems Development Division. Very secret.

Components Division.
Makes parts for the other guys, including integrated circuits.
SRA i Research A . Chicago. Publi textbooks
and learning kits.

Watson Lab
T.J. Watson Research Laboratory, Westchester County,
north of New York City. Theoretical and lookahead research.

an accused party admits no guilt but agrees to behave in
certain ways thereafter.) In response to a federal anti-trust
suit, IBM agreed to:
sell as well as lease its computers, and repair those
owned by others;
permit attachments to its leased computers;
not require certain package deals:
license various patents;
not buy up used machines;
and get out of the business of supplying computer
services, i.e., programming and hourly rentals.

Unbundling decision, late sixties. While this was not a government

action but a an internal policy decision by the company, it some-
how had a public-relations appearance of official compulsion.
Beset by pressures from makers of look-alike machines, users of
competitive equipment, and the threat of anti-trust action, IBM
decided to change its policy and sell programs without computers
and computers without programs. Delight amongst the industry
turned to chagrin as this became recognized as a price hike.

Telex Decision, September '73: Telex Corp. of Tulsa was awarded
$352,500.000 in triple damages (since reduced) for losses attributed
to IBM’s “predatory” pricing and other marketing practices.

Much more important, IBM was required to disclose the
detailed electronics required to hook things to their computers and
accessories within sixty days of announcing any. This was a great
relief for the whole industry, Essentially it meant IBM could no
longer dictate what you attach to their machines. Unfortunately,
it is not clear whether this will stand.

what we're waiting to hear about is whether the Nixon Justice
Department is, or is not, going to press the big anti-trust suit
which has been long brewing, at the persistent request of other
firms in the industry .

"THINK OF THE COMPUTER AS ENERGY,"
says a recent series of IBM ads.
But in terms of monopoly, price, and
the world's convenience, there would
seem only one way to complete the
analogy, viz.:

"THINK OF THE COMPUTER AS ENERGY.

"Think of IBM as King Faisal."

oty oF THE
1BM UMBRELLA

For a long time, during the
sixties, IBM's high prices provided
an environment that made it easy for
other companies to come into the field
and sel} computers and peripherals.
These high prices were referred to as
""the IBM umbrella."

However, this era has ended.
IBM now cuts prices in whatever areas
it's threatened. A brief flourishing of
companies making add-on disk and
core memories for IBM computers has
become precarious; not only will 1BM
now cut prices, but they have shown
themselves still disposed to invent new
restrictive arrangements (the recent
“virtual memory" announcement for
the 370 claimed that the program
will only work on IBM disk and core) .

BIBLIOGRAPHY

Harvey D. Shapiro, "I.B.M. and all the dwarfs,"
New York Times Magazine, July 29, 1973,
10-36.

An objective, factual article, sympa-
thetic to IBM-- although it drew at least
one irate letter from an ibmer who didn't
think it sympathetic enough.

"IBM: Time to THINK Small?" Newsweek, Octo-
ber 1, 1973, 80-84.

Frank T. Cary,. letter to the editor, Newsweek,
Oct. 15 73, p. 4. A snappish reply to
the above by the IBM Board Chairman,
who evidently didn't like the article very
much

Robert Samuelson, "IBM's Methods," New York
Times Sunday financial section, June 3,
1973, p. 1.

~+This article gives a unique
glimpse of some of the interesting things
that came to light in the Control Data suit
against IBM-- citing trial documents never
publicly released.

* William Redgers, Think. Stein and Day, 1989.

Subtitled A Biography of the Watsons
and IBM.

=+ Concentrates on the days before
computers. Fascinating profile of Watson,
a business tiger; but the view of the cor-
poration in an evolving nation is general
Americana that transcends fiction.

Would you believe Rodgers says
Watson was the kingmaker wo put General
lke in the White House?

Unfortunately, the book has relatively
less on the computer era, so the inside
story of many of their momentous decis-
ions since then remains to be told.

Heywooad Gould, Corporation Freak. Tower {paper~
back.)

Marvelous; hard to get; Gould thinks
IBM quietly bought up all the copies.

The musings of a sophisticated, clever
and observant cynic who began knowing
nothing about IBM, Gould's wide-eyed obser~
vation of its corporate style and atmosphere
is a jolt to those of us who've gotten used
to it. And he thought it was just another big
company!

Anonymous, "Anti-Trust; A New Perspective."
Datamation, Oct 73, 183-186.

Richard A. McLaughlin, "Monopoly Is Not a Game,"
Datamation, Sept. 1973, 73-77.

=*Questionnaire survey intended to
test truth of common accusations against IBM.
(Discussed in text above.)

W.David Gardner, "The Government's Four Years
and Four Months in Pursuit of IBM." Data-
mation, June 1973, 114-115,

Almost any issue of Computerworld or Datamation,
the two main industry news publications,
carries articles mentioning complaints about
IBM from various quarters on various issues.
Datamation's letters are also sometimes juicy
on the topic.

Any issue of On Line, a news sheet of the Computer
Industry Association, ten bucks a year.
(CIA-- no relation to the intelligence agency
-~ 16255 Ventura Blvd., Encino, CA 91316.)

T.A. Wise, "[.B.M.'s $5,000,000,000 Gamble,"
Fortune, Oct 1966.
DEm—

Daniel J. Slotnick, "Unconventional Systems.”
Proc. SJCC 1967, 477-481.
Interesting, among other reasons,
for the heaviness of the sarcasm directed
at IBM and its larger computers.

William Rodgers, "IBM on Trial." liarper’'s,
May 1974, 79-84, -
Continues where Think left off;
examines some of the Jirt that came out
in the Telex case, and other things.

The author regrets not being able to list more
articles and books favorable to IBM, but these do not
Seem to turn up so much. However, here are a few.

A Computer Perspective, by the office of Charles

and Ray Eames, Harvard U. Press, $13,

Angeline Pantages, "IBM Abroad." Datamation,
December 1972, 54-57.

For an example of the kind of adulation of IBM
based on faith, see Henry C. Wallich,
"Trust-Busting the U.S.A.," Newsweek
10ct 73, p. 90.

The IBM Songbook, any year-- they haven't been
issued since the fifties-- is definitely a
collectible.

Digital Equipment Corporation, in response
to the "Energy Crisis" of 1973, didn't turn out 57
their Christmas tree. Instead they hooked it up
to a water wheel they happened to have. Typical.

He C»\ Jer Fah s

This policy has made for slow but steady

ov« QTQV omP;t\ growth. In effect, Digital built a national cus- quw YOUK (MIT's LINC.
‘ tomer bese among the most sophisticated clients. 12 bits.)
The kids who as undergraduates and hangers-on PDP-1
built interfaces and kludgey arrangements, now (18 bits) S !
as project heads build big fancy systems around ! PDP-4
DEC equipment. The places that know computers ‘\ (18 bits)
usually have a variety of DEC equipment. around, PDP-5
usually drastically modified. (12 bits)
-n\ PDP-§
e ?D?eoP,{. Because of the great success of its small N I (36 Dbits)
computers, especially the PDP-8, even many com- 1963 | i
puter people think they only make small compu- i l .
The computer companies are often referred ters. In fact their big computer, the PDP-10, is PDP-7 i !
to in the field as "Snow White and the Seven one of the most successful time-sharing computers. l PDP-8 i
Dwarfs"-- a phrase that stays the same even as An example of its general esteem in the field: it | (
the lesser ones (like RCA and General Electric) is the host computer of ARPANET, the national PDP-9 ; \ L
get out of the business one by one. The phrase computer network among scientific installations ' PDP-10
suggests that they're all alike. To an extent; funded by the Department of Defense; basically i LINC-8
but there is one company sufficiently different, this means ARPANET is a network of PDP-10s. (two prog.
and important enough both in its history and its PDP-14 PDP-8i followers,
continuing eminence, to require exposition here. DEC's computers have always been designed (industrial l runs progs.
This is Digital Equipment Corporation, usually by programmers, for programmers. This made control | \ for either.)
pronounced "Deck," the people who first brought for considerable suspense when the PDP-11 did boxes) i PDP’HS/ \L
out the minicomputer and continue to make fine not appear, even though the higher numbers did, l .
stuff for people who know what they are doing. and the grapevine had it that the 11 would be PDP-12
g sixteen-bit machine. It proved to be well PDP-16 PDP-15 v
Other computer companies have mimicked waiting for (see p. 22), and has since become (COMPILE PDP-8e
IBM. They have built big computers and tried the standard sophisticated 16-bit machine in the YOUR
to sell them to big corporations for their business industry. OWN) e,
data processing. or big "scientific" machines and R
tried to sell them to scientists. An area DEC has emphasized from the first (There were no PDP-2, 3 or 13.) -_lPDE;u:_
has been computer display (discussed at length TR
DEC went about it differently, always He- on the flip side). Thus it is no surprise that (16 bits)

signing for the people who knew what they were
doing, and always going to great lengths to tell
you exactly what their equipment did.

their interactive animated computer display, the
GT40 (see pA.bQL) is an outstanding design and
success. (And the University of Utah, currently

(Models: 5,20,40,45...)
WAt s 2 PDP?
]
: DEC's Fvade name fora Con‘dct.
the mother church of computer display, runs its
First they made circuits for people who graphic systems from PDP-10s.)

wanted to tie digital equipment together. Then, A
since they had the circuits anyway, they manu- In this plucky, homespun company. where

factured a computer (the PDP-1). Then more even president Olsen is known by his first name I'm not getting any favors from DEC, I'm
computers, increasing the line slowly, but always (Ken), it is understandable that marketing pizazz ‘just saying about them what people ought to
telling potential users as much as they could takes a back seat. This apparently was the view know .

possibly want to know. of a group of rebels, led by vice president Ed
deCastro, who broke off in the late sixties to

start a new computer company around a 16-bit
computer design called the Nova-- rumored to
have been a rejected design for the PDP-11. The
company they started, Data General, has not been
afraid to use the hard sell, and between their
hard sell and sound machine line they've seriously
challenged the parent company .

ks

However, | do have grateful recollections
of the warmth and courtesy with which people
from Digital Equipment Corporation have taken
pains to explain things to me, hour after hour,
conference after conference.

The same for its manuals. Peopie who
wrote for information from Digital would often
get, not a summary sheet referring you to a local
sales office, but a complete manual (say, for
the PDP-8), including chapters on programming,
how to build interfaces to it, and the exact

In the early sixties they had one man in
one smail office to service and sell all of New
Jersey and New York City. But that one guy, =«
Dave Denniston, spent considerable time respon-
ding to my questions and requests over a period
of a couple of years, and in the nicest possible
way, even though there was no way | could buy
anything. You don't forget treatment like that.

The effect of this was that sophisticated users--
especially in universities and research estab-
lishments-- started building their own. Their
own interfaces, their own modifications to DEC
computers, their own original systems around
DEC computers.

But Digital marches on, the tiorputer lan's
computer company. If IBM is computerdem's
Kodak, whose overpriced but quite reliable goods
have various drawbacks, DEC is Nikon, with a
mix-and-match assortrient of what the hotshots
want. That's pluralism for you.

PERIPHERRLS for YouR MiN|

Some kinds of peripheral devices, or com-
puter accessories, are always necessary. Only
through peripherals can you look at or hear
results of what the computer does, store quan-
tities of inforhmation, print stuff out and
whatnot,

MAGNETIC. RECORDING MEDIA

Any nuaber of differcut magnetic devices
are used for mass storage of symbolic (digital
information; each has its own medium, or form
of storage.

I

25 rﬂ_'"m’natim:. ..

TIME, 14 Jan 74, SO.

Piffle. That's the overall size of the
memory, which is utterly independent
of the sophistication or general power N
of the computer itself. The ones which are removable (called "re-

Trying to print lists of available stuff movable media®) are of all sorts.

here is hopeless. There are thousands of

peripherals from hundreds of manufacturers.

If you buy a mini, figure that your peripherals

will cost $1500 (Teletype) on up. But mainten-

ance (see p.5¢) is the biggeSt problem. If Jeared?

you buy peripherals from the manufacturer of It's just a

the computer, at least you can be sure someone DECtape drive,

will be willing to maintain the whole thing. upside down.

(Independent peripheral manufacturers will

often repair their own equipment, but nobody

wants to be responsible for the interface.)

irillion-bit memories are available, and you
could put one on a machine as small as
a PpP-8.

EFFECTIVELY STANDARDIZED BY IBM

3/4-inch magnetic tape.
Pre-1965: 6 tracks data, 1 track parity.
Post-1965: 8 lracks data, 1 track parity.
2741 disk
Stack of removable platters size of a
layer cake.
3330 disk
Same but bigger cake.
disk cartridge
Plastic case, size of coolie hat, en-
closing disk.
floppy disk
Flexible, card-thin disk enclosed in
square 8" envelope.
Prints some i data cell (not very common)

If you want a list see "Table of Mini-
peripheral Suppliers," ComEuter Decisions,
Dec 72, 33-5; more thorough poop is offered
by Datapro Research Corp., 1 Corporate Center,
Route 38, Moorestown NJ 08057

Disk cartridges [or
this model Jdisk drive.

u minute ([faster i Plastic strips pulled out of wedge-

. b dtal the lines are rmzvr'uu)) d arranged in a rotatin
As to the serious matter of disks, an ex- The bim‘.’"_c“f‘,t,“ disk Price around §16,000. Sh‘;pid tube:tr 22 ulled out of 3hi5
cellent review article is "Disc Storage for ttsely is hidden in the ! orronser ood ore

plastic case. Never-

Minicomputer Applications," Computer Design
both principles

June 1973, 55-66. This reviews
of different types of disk drives, and what
various manufacturers offer.

Also helpful on disks and tapes: '"Making
a Go of Ministorage,” by Linda Dermer. Com-
puter Decisions, Feb 74, 32-38.

Best recent

Disk drive for the 11.
Most such devices go
at 30 spins a second,
or 1800 rpm. The heads
that read and write
information are on
moving arms that have
to be positioned on

the different tracks.

theless, they sometimes
get scratched or break,

A disk cests $75 and
holds up to 8,400,000
eharacters c¢f infor-
mation (1.2 million
PDP-11 words, which

(E>Of couvse,

'e‘::r’l\gnl; Yoo y]

cards ge U« Lerme

carousel, whipped around a drum to make
temporary drum memory, returned to case.

EFFECTIVELY STANDARDIZED BY OTHERS

LINCtape
3/4-inch tape on a 4-inch reel (fits in
pocket) , specially coated against fric-
tion, developed at Lincoln Labs for LINC

survey.

are 16 bits each).

TYPICAL _._
PERIPRCRALS 00

pulses tu the vomputer tive a belt-driven quarter—inch baby,
(“' ""L based on the hoies costing maybe $1000 without interface.
sholin, ou (& 36) punched in the cards. CRAM (Card Random Access Memory)-- rare
Big pieces of plastic (about four inches
by two feet) pulled by notches out of a
cartridge and whipped around a drum.
National Cash Register.

computer (see p. 41).

DECtape
Same size and reel but differently for-
matted for DEC machines (varies with
model). Very reliable. A personal fav-
orite of many programmers.

3M CARTRIDGE
The Scotch-tape people say the cassette
is unreliable, and offer as an alterna-

(Some disks have a head
for every track, which
costs More.)

If you have disk drives
(85500 each) you need a
controller ($5500). Sigh.

YouR TURTLE ANY MUSIC Box

Surely nobody can resist the peripherals offered
by General Turtle, Inc., 545 Technology Square, Cam- BRAILLE
bridge, Massachusetts 02139.

HARDLY STANDARDIZED AT ALL

"Cassettes"-- Philips—type audio-type cassette.
Used by various manufacturers in
various ways. Sykes, Sycor, DEC, Data
General and others have separate, and us-
uvally incompatible, systems.

No joke here. People are still making
Braille copies of things by hand. But the way
to do it is by computer: the machine can punch
out new copies of whatever's stored in it,
repeatedly.

The Turtle is a sort of casserole on wheels that
takes a pencil down the middle. Attached to your
computer, it can be programmed to ramble around draw-
ing pictures, or just do wheelies on the parquetry.
$800.

A Braille-punching adapter kit is avail-
able for the plain 33 Teletype, I believe
from Honeywell.

<

Then the Music Box is $600. It sings in four
voices, enough for a lot of Vivaldi, does five octaves
and looks to the computer like a Teletype. They will A similar adapter kit for IBM's System 3

simila a;
Play you samples on the phone (617/661-3773) . is available from EI:BM. Y You never know what you'll see next. In 1969
one firm announced a "high-density read-only

(It is of interest that an early use of memory device" which anyone could see was a
Mooers' TRAC Language was with Braille conver- plain 45 RPM phonograph-- but with digital el-
sion.) ectronics. And it made sense. But it doesn't

seem to have caught on.

For either of these you need a Controller {$1300).

58

ST

is an imposing term which means almost anything.
Basically, "simulation” means any activity that
rep or bl i [o

simulation is using the computer to mimic some-
thing real, or something that might be, for any
purpose:’ to understand an ongoing process better,
or to see how something might come out in the
future.

Here again, though, the Science myth steps
in to mystify this process, as though the mere
use of the computer conferred validity or some
kind of truth.

(On TV shows the Space Voyagers stand
in front of the "computer" and ask in firm, unnat-
urally loud voices what will be the results of so-
and-so. The computer's oracular reply is infal-
lible. On TV.)

Let there be no mystery about this. Any
use of a data structure on a what-if basis is
Simulation. You can simulate in detail or crudely;
your simulation can embody any theories, sensible
or stupid; and your resuits may or may not cor-

regpond to reality.

A “comp prediction® is the of
a simulation that someone, evidently, is willing
to stand behind. (See "computer election predic-
tions," p. 6% .)

These points have to be stressed because
if there is one computer activity which is preten—
tiously presented and stressed, it is simulation.
Especially to naive clients. There is nothing
wrong with simulation but there is nothing super-
natural about it either.

Another term which means more or less
the same is modelling.

In the loose sense, simulation or model-
ling consists of calculations about any des-
cribable phoenomena-- for instance, optical
equations. In optical modelling (and this is how
they design today's great lenses), a data struc-
ture is created which represents the curvature,
mounting, etc. of the separate glasses in a lens.
Then "simulating” the paths of individual rays
of light through that lens, the computer program
tests that lens design for how well the rays
come together, and so on. Then the design is
changed and tried again.

Another type of simulation, an important
and quite distinct one-- is that which represen'ts
the complex interplay of myriad units, finding
out the upshots and consequences of intricate
premises. In traffic simulations, for instance,
it is easy enough to represent thousands of cars
in a data structure, and have them "react”
like drivers-- creating very convincing traffic
jams, again represented somehow within the
data structure.

Basically simulation requires two things:
a representation, or data structure, that somehow
represents the things you're simulating in the
aspects that concern you; and then a program
does something to these data, that is in some
way like the process you're concerned about
acting on the things you're modelling. And each
event of significance enacted by the program

must somehow leave its trace in the data structure.

The line between simulation and other pro-
gramming is not always clear. Thus the calcu-
lation of the future orbits of the planets could be

called "simulations." B

The most intricate cases, though, don't
particularly resemble any other kinds of programs.
The intricate of physi. ts,
especially swarms and myriads with mixed and
colliding populations, are especially interesting .
(In a recent Scientific American article, simula-
tion helped to understand possible streamers
of stars between galaxies as resulting from nor-
mal considerations of inertia and gravitation.
(Alar and Juri Toomre, "Violent Tides between
Gelaxies,” Sci. Am, Dec 73, 38-48.))

Models of complex and changing rates are
another interesting type. Enacting complex
things, whose are ly ch i
in terms of percentage multipliers of each other,
sound easy in principle, but their consequences
can be quite surprising. (See "The Club of
Rome," p. 6§ .)

To imegine the kinds of mixed-case myriad
models now possible, we could on today's big
computers model entire societies, with a separate
record describing each idividual out of millions,
and specifying his probabilities of action and

iffe P ing to various theories
-~ then follow through whole societies' behavior
in terms of education, income, marriage, sex,
poverty, death, and anything else. Talk about
tin soldiers and boats in the bathtub.

Any computer language can be used for
some kind of simulation. For simulations invol-
ving relatively few entities, but lots of rates
or formulas, good old BASIC or FORTRAN is
fine. (MAGI's "Synthevision" asystem, which
could be said to "simulate" complex figures in
a three-dimensional space, is done in Fortran;
see p.JWX.) For simulations involving a lot
of separate objects, special cases and discrete
events, TRAC Language (see p. |§) is great.
If numerous mathematicel formulas are involved,
and you want to change them around consider-
ably in an experimental sort of way, APL is
well suited (see pp. ZZ).

There are a number of special "simulation"
languages, notably SIMSCRIPT and GPSS. These
have additional features useful, for instance, in
simulating events over time, such as "EVENT"

which sy ize or draw division-
lines in time (the simulated time). Simulation
languages generally allow a grest variety of
data types and operations on them.

The list-processing fanatics, of course,
insist that their own languages (such as LISP
and SNOBOL) are best. And then there's PLATO
(see pP%(,), whose TUTOR language is splen-
did for both formulas and discrete work-- but
allows you only 1500 variables, total (60 bits
.each).

The thing is, any set of assumptions, no
matter how intricate, can be enacted by & compu-
ter model. Anything you can express exactly
can be cerred out, and you can see its conse-

in the s dout-- a pri
a screen display, or some other view into the
resulting data structure.

Obviously these enactments (or sometimes
"predictions") are wholly fallible, deriving any
validity they may have from the soundness of
the initial data or model.

However, they have another important
function, one which is going to be very impor-
tant in education and, I hope, general public
understanding, &s computers get spread about
more widely and become more usable.

The availability of simulation models can
make things easier to understand. Well-set-up
simulation programs, available easily through
terminals, can be used as Staged Explanatory
Structures and Theoretical Exploration Tools.
The user can build his own wars, his own so-
cieties, his own economic conditions, and see
what follows from the ways he sets them up.
Importantly, different theories can be applied to
the same setups, to make more vivid the conse-
quences of one or the other point of view.

(Indeed, similar facilities ought to be avail-
able for Congress, to allow them to pour a new
tax through the population and see who suffers,
who gains...)

I should point out here that for this pur-
pose—- Insightful Simulation-- you don't always
need a computer. I have in mind the so-called
"simulation games," which if well designed give
extraordinary insights to the players. Allen
Calhamer’s brilliant game of Diplomacy, for in-
stance (Games Research, Boston; available from
Brentano's, NYC) teaches more about international
politics than you could suppose possible, I am
also intrigued by a game called "Simsoc,” worked
out by a sociologist to demonstrate the develop-
ment of social structures from a state of random
creation, but I haven't played it. (Clark C.
Abt, of Abt Associates, Boston, has also done
a lot of interesting design here.)

A last point, & very "practical” application.
Simulation makes it possible to enact things with~
out trying them out in concrete reality. For in-
stance, in the lens-design systems mentioned
earlier, the lenses don't have to be actually built
to find out their detailed characteristics. Nor
is it necessary to build electronic circuitry, now,
to find out whether it will work-- at least that's
what the salesmen say. You can simulate any
circuit from a terminal, and "measure" what it
does at any time or in any part with simulated
meters, Similarly, when any computer is des-
igned now, it's simulated before it's built, and
programs are run on the simulated computer,
as enacted within a real computer, to see if it
behaves as intended (Actually there are some
hot-wire types who insist on building things
first, but one assumes that the more sensible
computer designers do this.)

With automobiles it's harder; but GM, for
instance, simulates the handling characteristics
of its cars before they're ever built-- so that
designers can redistribute weight, change steer-
ing characteristics and so on, till the handling
characteritstics come out the way the Consumers
seem to like.

BIBLIOGRAPHY

Simulation magazine is the official journal of
Simulation Councils, Inc., the curiously-
named society of the Simulators, It costs
$18 a year from Simulation Councils, Inc.,
Box 2228, La Jolla CA 92037.

For all I know you get annual mem-
bership free with that. I've always wanted
to join but it was always the one thing too
many; but their conference programs are
sensational. Where else can you hear
papers on traffic, biology, military hardware,
weather prediction and electronic design
without changing your seat?

YFICHFIC Y I Y I I Y I ICY

- THRT'S WHAT RRCES HORSE WA

"Simulation” means almost anything that in
any way represents or resembles something.
Which is not to say it's a useless or improper
term, just a slippery one.

Examples. Here are ways we could "simu-
late” a horse race:

Show dots moving around an oval track
on a. completely random basis, and declare the
first to complete the circuit The Winner.

Assign odds to individual horses, and
then use a randomizer to choose the winner,
taking into account those odds. (This is how the
PLATO "horserace" game works; see p.bK77.)

Give conditional odds to the different horses,

based on possible "weather conditions.” Then
flip & coin (or the computer equivalent, weighted
randomization) to test the "weather conditions,"
and assign the horse's performance accordingly.

Program an enactment of a horse race, in
which the winner is selected on the basis of
the interaction of the horoscopes of horse and
rider.

Create a data structure representing the
three-dimensional hinging of horse’'s bones, and
the interlaced timing of the the horse's gait.
(This hes been done at U. of Pennsylvania on a
DEC 338.) Then have these stick figures run
around & track (or the data structure equivalent).

Using a synthetic-photography system
such as MAGI's Synthavision (see p.Jn%), create
the 3D data structure for the entire surface of a

running horse over time; then make several copies

of this horse run around a track, and make sim-
ulated photographs of it.

And so on.

So don't be snowed by the term "simulation."

It means much, little or nothing, depending.

OPERATIONS
eSEdkeH

is an extension of Simulation in a fairly obvious
direction.

If simulation means the Enactment of some
event by computer, Operations Research means
doing these enactments to try out different strat-
egies, and test the most effective ones.

Operations research really began during
World War II with such problems as submarine
hunting. Given so-and-so many planes, what
pattern should they fly in to make their catcr_.ing
submarines most likely? Building from certain
types of known probability, (but in areas where
"true" mathematical answers were not easily
found), operations researchers could sometimes
find the best ("optimal") strategies for many
different kinds of activity.

Basically what they do is play the situation
out hundreds or thousands of times, enacting it
by computer, and using dice-throwing techniques
to determine the outcomes of all the unpredictable
parts. Then, after all entities have done their
thing, the program can report on what strategies
turned out to be most effective.

Example. In 1973 the Saturday Review of
something-or-other printed a piece on the solu-
tion, by OR techniques, of the game of Monopoly.
Effectively the game had been played thousands of
times, the dice thrown perhaps millions, and
the different "players” had employed various
different strategies against each other in a varying
mix: Always Buy, Buy Light Green, Utilities and
Boardwalk, etc.

A complete solution was found, the strategy
which tends (over many plays) to work best. I
forget what it was.

Using another technique, the game of foot-
ball was analyzed by Robert E. Machol of North-
western and Virgil Carter, a football personage.
Their idea was to test various maxims of the
game, to find out which common rules about
beneficial plays were true. What they did was
replay fifty-six big-league football games on a
play-by-play basis, rate the outcomes, and see
which circumstances proved most advantageous on
the average. ['ve mislaid the reprint (Operations
Research, a recent year), and being totally ig-
norant of football can remember none of the find-
ings. Anyhow, that's where to look. hbon fund

T betowat

The earlier explanation of Operations

Research wasn't quite right. It's any systematic

study of what works best. Computers can help.

BIBLIOGRAPHY

Irvin R. Hentzel, "How to Win at Monopoly."
Saturday Review of Science, Apr 73, 44-8.

virgil Carter and Robert E. Machol, "Operations
Research on Football." Operations Research,
March 1971, 541-544.

GREAT [SSUES

Until now, the obscurity of computers
has kept the public from understanding
that anything like political issues were
involved in their use. But now a lot of
things are going to break. For instance-

NHITHER T FEI7?

J. Edgar Hoover's recent death
raised a very serious problem. What
about all those files he had been keep-
ing? Responsible critics of the FBI,
such as Fred J. Cook, have claimeud tnat
Hoover's policy basically consisted of
chasing lone punks (like Dillinger,
Bonnie and Clyde), harassing political
dissenters, and keeping vast unnecessary
records on innocent citizens-- thus vir-
tually creating the vast network of or-
ganized Crime in America, which stays
off the police blotters. Thus the ques-
tion of the FBI Succession was an impor-
tant one.

The question has been answered. In

July 1973 Nixon appointed Clarence Kelley,

police chief of Kansas City. After the

previous goings-on-- for instance, Nixon's

seeming to offer the post to Judge Byrne
while he was presiding over the Lllsberg
trial-- this looked to the press like a
staid and uncontroversial resolution.
But was it?

Kelley certainly is aware of tech-
nology., It seems to be he that put dis-
play screens in Kansas City police cars,
created the ALERT system (Automated Law
Enforcement Response Team) and COPPS
(Computerized Police Planning System),
which for your amusement ties into MULES

(Missouri Uniform Law Enforcement System).

{See Melvin F. Bockelman, "On-Line (om-~
puters Keeping Things Straight," which
describes the Kansas City computer setup.
Communications, June 73, 12-20.) In a
more threatening vein, supposedly the
Kansas City department kept computer
files on "militants, mentals and acti-
vists." (Schwartz article, p. 19.)

What Kelley does is thus of interest
to us all. The big question is whether,

for all his concern with police automation,

he is also concerned with the freedoms
this country used to be about.

“NECESSITY HAS BEEN THE EXCUSE FOR
TVERY INFRINGEMENT OF HUMAN FREEDOM,
T IS THE ARGUMENT OF TYRANTS:

IT 1S THE CREED OF SLAVES,

Ebmunp Burke

MIBTARE V)sES
OF CoMpuTeRS

A lot ‘of people think computers are
in some way cruel and destructive. This
comes in part from the image of the com-
puter as "rigid" (see "The Myth of the
Computer,” p. 9), and partly because
the military use so many of them,

But it's not the nature of a com-
puter, any more than the nature of a
typewriter is to type poems or death
warrants.

The point is that the military peo-
ple are gung ho on technology, and keen
on change, and Congress buys it for them.

_ No way is there rcom to cover this
subject decently. But we'll mention a
few things.

The Pentagon, first of all, with its
payroll of millions, with its stupendous
inventories of blankets and bombs and
toilet paper, was the prime mover behind
the development of the Cobol business
computing language. So a vast amount is
spent just on computers to run the mili-
tary establishment from a business point
of view.

Of course that's not the interesting
stuff.

The really interesting stuff in com-
puters ail came out of the military.
The Department of Defense has a branch
called ARPA, or Advanced Research and
Development Agency, which finances all
kinds of technical developments with
vaguely military possibilities.

It is thus a supreme irony that ARPA
paid for the development of: COMPUTER
DISPLAY (the Sketchpad studies ‘al Lincoln
Labs; see p.HMT>); TIME-SHARING (e.g.
the CTSS system, see p. 4$); HALFTONE
IMAGE SYNTHESIS (the Utah algorithms: but
see all of pp. Bdm 32 -39); and lots
more. Some folks might say that proves
it's all evil. I say let's look at cases.
While they have military applications,
that's simply because they have appli-
cations in every field, and the military
are just wheré the money is.

Just to enumerate a few more mili-
tary things--

Command and control-- the problem
of keeping track of who's dene what to
whom, and what's left on both sides,
el gty ordess threyghe

It is a solemn irony that the great
"465L Command and Control System"--
grand room with many projectors driven
by computer, only something like those
in "Dr. Strangelove™ and "Fail-Safe'--
may be a prototype for offices and con-
ference rooms of the future.

"Avionics"-- all the electronic
gadgets in airplanes, including those
for navigation. (A recent magazine
piece described how wonderful it felt
to fly the F-111-2 which has a computer
managing the Feel of the Controls for
you.)

"Tactical systems''-- computers to
manage battlefield problems, aim guns
and missiles, scramble your voice among
various air frequencies or whatever they
do.

"Intelligence"-- computers are used
to collate information coming in from
various sources. This is no simple prob-
lem-- how to find out what is so from a
tangle of contradictory information;
think about it. Don't think about how
we get that information.

"Surveillance"-- it can't all be
automatic, but various techniques of
pattern recognition (see p.jMi2) are no
doubt being applied to the immense quan-
tities of satellite pictures that come
back. (Did you know our Big Bird satel-
lite either chirps back its pictures by
radio, or parachutes them as Droppings?)

Of course, the joker is that all
this obsession with gadgets does not
seem to have helped us militarily at all.
The army seems demoralized, and the navf
losing ground to a country that hardly
even has computers.

QUIS CUSTODIET, HUH?

Boston welfare recipients have been
systematically short-changed for at least
14 years, according to Computerworld (10
oct 73, p. 2).

A systems analyst recently discovered
that the welfare program was not calcul-
ating cost-of-living increases on a com-
pound basis, as it should have been, but
as a simple increase based each year on
an obsolete original figure.

However, it's too late to ask for
refunds, and anyway not many welfare re-

cipients take Computerworld.

k PREVIOUSLY
UNPUBLSHED STORY

Not all kids who play ‘with computers are
quite as law-abiding as the R.E.$.1.§.T.0.R.S.
And the temptations are very strong.

One su went on a
field-trip to & suburban Philadelphia pohce
station, and saw a demonstration of the police
remote information system,

The police who were demonstrating it,
not being computer freaks, didn't realize how
simple it was 'to observe the dial-in numbers,
passwords and protocol .

When this lad got home, he merrily went
to his i in the and
proceeded to enter into Philadelphia's list of
most-wanted criminals the names of all his
teachers.

A few days later a man came to his house
from the FBI. He was evidently not a regular
operative but a technical type. He asked very
nicely if the boy had a terminal. Then the FBI
man asked very nicely if he had put in these
names. The boy admitted, grinning, that he
had. (Everyone in the school knew it had to
be he.)

The FBI man asked him very, very nicély
not to do it again.

"Of course it didn't do any harm," says
the culprit. "I had them down for crimes like
‘intellectual murder.' What could happen to them
for that?"

Does that meke you feel better?

PHILADELPHIANS AND CROOKS PLEASE NOTE:

This happened five or six years ago, and
without a doubt the system is by now totally secure
and impenetrable, Let's hope.

[OUSED -VP ReCORDS:
& ChsE N POINT

The question of "privacy" in the abstract
isn't really an issue. Who cares if God sees
under your clothes? The problem is what hap-
pens to you on the basis of people's access to
your records.

Margo St. James is a case in point.

Ms. St. James is a celebrated west coast
prostitute, once well known for her activities
with Paul Krassner as "The Realist Nun;” she
is now Chairmadam of an organization called
COYOTE, igni for the iminalization
of prostitution.

She originally had no intention of becom-
ing a prostitute. Rather, she learned that
there was a false record of her arrest for pros-
titution; and despite her efforts to clear her
name, the record followed her wherever she
tried to get a job. Finally she said the hell
with it and did become a prostitute.

(Membership is $5 a year. COYOTE,
Box 26354, San Francisco CA 94126)

BLACK AND BLUE
AND RED AlL OVER

The phone system is bruised and bleeding
from the depredations of people whe have found
out how to cheat the phone company electronical-
ly. Such people are called Phone Freaks (or
Phreax); articles on them have appeared in such
places as Ramparts, The Realist and Qui. For
no clear reason, the electronic devices—lhey use
have been given various colorful names:

black box: device which, attached to a
Tocal telephone, permits it to receive
an incoming call without billing the
calling party; it "looks like" the
phone is still ringing, as far as the
billing mechanism is concerned,

blue box: device that generates the magical
"inside" tones that open up the phone
network and stop the billing mechan-
ism. Posession of a blue box can

put you in prison.

As with so many things, the
phone system wes not designed under
the assumption that there would be
thousands of electronic wise-guys
capable of fooling around with it.
Thus the phone system is tragically
vulnerable to such messing around.
The only thing they can do is get
ferocious laws passed and really try
to catch people bolh of which are

P ‘I\r
lt 1s 1llegal to gussess a tone gener-
ator, or to inform anyone as to what
the magical frequencies are-- even
though a slide whistle is such a

tfone g tor, and any i ing
library is said to have the informa-
tion.

red box: device that simulates the signals
made by falling coins.

The fact that the names of these devices
are given here is not to be construed as in any
sense approving of them, and anybody who
messes around with them is a fool, playing with
napalm.

Even if people were entitled to steal back
excess profits from the phone company-- the
so-called "people's discount"-- the trouble is
that they mess things up for everyone. We have
a besutiful and delicate phone system, one that
stands ready to do wonderful things for you,
including bring computer service to your home;
even if, for the sake of argument, it is run by
dirty rats, messing around with it is like poi-
soning the reservoir for everybody.

"DATA BANKS"

The term 'data bank" doesn't have
any particular techanical meaning. It
just refers to any large store of infor-
mation, especially something attached to
a computer.

For instance, at Dartmouth College,
where the social scientists have been
working hand-in-hand with their big time-
sharing project, an awesome amount of data
is already available on-line in the social
sciences. The last census, for instance,
in detailed and undigested form. Suppose
you're at Dartmouth and you get into an
argument over whether, say, divorced women
earn as much on the average as women the
same age who have never been married,

To solve: you just go to the nearest terminal,
bat in a quick program in BASIC, and the
system actually re-analyzes the census data
to answer your question. 1If only Congress
had this!

The usefulness should be evident.

Because of the way census data is hand-
led, now, it is not possible to ask for the
records of a specific individual. But this
kind of capability leads to some real dangers.

There is a lot of information stored
about most individuals in this country.
Credit information, arrest records, medical
and psychiatric files, drivers' licenses,
military service records, and s¢ on.

Now, it is not hard to find out about
an individual. A few phone calls from an
official-sounding person can ascertain his
credi} rating, for instance. But that is
very different from putting all these re-
cords together in one place.

The potential for mischief lies in
danger to individuals. Persons up to no
good could carefully investigate someone
through the computer and then burglarize
or kidnap. Someone unscrupulous could
look for rich widows with 30-year-old un-
married daughters. Organized crime could
search for patsies and strong-arm victims.

In the face of this sort of possi-
bility, computer people have been worry-
ing for years; noteworthy is the study
by Alan Westin that originally sounded
the alarm, and his too-reassuring follow-
up study of some data-gathering organ-
izations (see bibliography). But the
scary data banks, the ones that evidently
keep track of political dissenters,
aren't talking about what they do (see
Schwartz piece).

Basically, the two greatest dangers
from data banks are organized crime and
the Executive branch of the Federal Gov-
ernment-- assuming there is still a dis-
tinction.

Imagine if
the Watergate mob
had had control over
national data banks.
Enough said.

It may seem odd, but Nixen has said
he is concerned about computers and the
privacy problem. Cynics may joke about
what his concern actually is; but a more
credible stand was taken by vice-presi-
dent Ford at the 1974 National Computer
Conference, Ford expressed personal
concern over privacy, particularly consid-
ering a proposed system called FEDNET,
which would supposedly centralize govern-
ment records of a broad variety.

Not mentioned by Ford was the matter
of NCIC, the National Crime Information
Center. This will be a system, run by
the FBI, to give police anywhere in the
country. access to centralized records.
THE QUESTION IS WHAT GETS STORED. Ar-
rest records? Anonymous tips? (It would
be possible to frame individuals rather
nicely if a lot of loose stuff could be
slipped into the file.)

Many people seem to be concerned
with preserving some "right to privacy,”
which is certainly a very nice idea, but
it isn't in the Constitution; getting
such a "right" formalized and agreed upon
is going to be no small matter.

But that isn't what bothers me,
Considering recent events, and the char-
acter of certain elected officials whose
devotion to, and conception of, democracy
is lately in doubt, things’ are scarcely
as abstract as all that. Considering how
helpful our government has been to brutal
regimes abroad-- notably the Chile over-
throw, which some say was run from here
{and which used sports arenas for deten-
tion just as John Mitchell did--) we can
no longer know what use any information
may find in this government. Tomorrow's
Data Bank may be next week's Enemies List,
next month's Protective Custodial Advis-
ory-- and next year's Termination List,
(I don't know if you saw Robert Mardian's
eyes on the Watergate hearings, but they
chilled my blood.)

Heather M. David, “Computers, Privacy, and Secu-
rity." Computer Decisions, May 74, 46-48.
Alan F. Westin, Privacy and Freedom, 1967.
alan F. Westin and Michael A. Baker,
Databanks in s Free Society: Computers, Re-
;;;d—l(eegins and Privacy. Quadrangle,
50.
“Landmark Study of Computer-Privacy Problems
Completed.” CACM, Dec 72, 1096-7.
Complacent review of Westin & Baker.
Herman Schwartz, review of Westin & Baker book
NiTimes Book Review, 8 July 73, 19-20.
Notes that the optimism of Westin
and Bsker is based on their ignoring
various “"much-feared information centers"
already maintained by the government.
Stanton Wheeler (ed.), On Record: Files and
Dossiers in American Life. Russell
Sage Foundation (NYC), $10.
"Tax Records: First the Farmers; Then?"
Datamation, Dec 73, 105-110.
“How Falr Are Those Fair Credit Guides?"
Datamation May 73, 120-124.
Phil Hirsch, "Computer Systems and the Issue of
Privacy: How Far Away is 1984?" Datamation, becTt, 1013,

"and the rocket's red glave,
The bombs bursting in air,
Gave proof through the night
That our flag was still there.

"Oh, say, does that star-spangled banner yet wave
0'er the land of the free and the home of the brave?"

wc - F.5. Key

4

s
|

I‘ | |.¥ i

\
_,1

THE ABM

Its name has kept changing, possibly
to lull the public, possibly to gull the
Congress. Anyhow, would you believe a
system, totally controlled by computers,
designed to shoot down oncoming missiles?
If you would, read on.

It's been called Nike-X, Safeguard
and goodness knows what. (It's even been
called a "thin shield"-- masculine, huh?
Perhaps Congress would pay more if they

called it the Trojan 4X.) But generally
we refer to it as the ABM (Anti-Ballistic
Missile). It's the anti-missile missile

people have talked about, and in it lie
many interesting morals, possible com-
parisons, etc., for which there is no
space here.

Western Electric is the prime con-
tractor. They're the manufacturing arm
of the telephone company, remember, the
same people who make the Princesst® phone.
0f the hundreds of millions of dollars
they are taking in on this project, much
of it has to go back out-- to Univac,
which makes the computers; to Bell Labs,
which guides the project, whose
Whippany, N.J. facility is totally given
over to it; to the rocket-builders and so
on.

The system is a turkey.

Note that in telling you this I am
drawing only on information that is pub-
licly available, and drawing conclusions
from it the way one usually draws conclu-
sions.

Here is how the great ABM is sup-
posed to work.

Immense radars scan over the hori-
zon looking for possible reflections
that might be intercontinental missiles.

The radar images are forever con—
stantly analyzed by computers, using
every trick of Pattern Recognition (see

B OMI2) -

Aha! Something is coming.

Yes, yes, I'm quite sure now, says
the computer. We have fifteen minutes.

Great doors swing open, and a long
phallic shape arises. It has jagged an-
gular fins, inherited from the smaller
anti-aircraft Nike {(we say Nikey) rockets
that preceded it. This missile is called
the Spartan.

It takes off.

The computer system is tracking the
oncoming missile. Here it comes-- it's
dodging now-- the Spartan is turning,
going faster and faster-- they're coming
together-—

Oncoming missile speed: maybe 15,000
miles an hour. Spartan speed: maybe
10,000, who knows. In these few minutes
the Spartan has gone 400 miles.

How's your tennis?

Can you hit a tennis ball fired out
of a cannon?

But now comes the good part.

The Spartan goes off. Yay! It too
contains an atomic bomb.

If it goes off within five miles of
the attacking missile, the hope is that
the attacking missile's thermonuclear
misfire. So it lands in Times Square,
just breaks a few buildings and spreads
radioactive contamination.

But wait.

What if Spartan missed.

Oops, sorry, Montreal.

Never fear! Have you forgotten

Sergeant York? Have you forgotten the
Alamo?

i

53

There is another missile. It is
called Sprint. It is shaped like the
point of a pencil. It is almost all
propellant. When the great computers
realize that the bad guy has gotten
through, up goes Sprint! Sprint is elo~
quently called the "terminal defense
system,” It only has a couple of minutes.

Brighter than a thousand suns!
Sorry, Scarsdale. Can't win 'em all.

If you find this description mind-
boggling, that's because it is. Anybody
who imagines that this project, on which
billions of your dollars have already
been spent, can work, is a wishful
thinker indeed.

Even if missiles stayed like they
were in the good old days of 1962, big
helpless clunkers they had to fuel up
just before the shoot, the likelihood of
the S-mile ABM detonation they count on
was pretty low. (Supposedly ARPA was
hoping that Spartan and Sprint could be
replaced with ultrapower, fry-in-the-sky
laser beams, zapping down all comers
with sky-piercing stabs under computer
control-- but that is said to have been
abandoned.)

But even given, and only for the
sake of argument, the feasibility of
Spartan-Sprint for fish-in-a-barrel
shots, look what's happening now.

MIRVs and FOBs.

MIRV (Multiple Independently Tar—
geted Re—entry Vehicle) basically means
Multiple Warheads. One rocket can carry
all these little guys, see. that fan out
when it gets near the target, and each
one goes to its own target city or instal-
lation. FOB, or Fractional Orbital Bom-
bardment system, just means that they
send the thing into an orbit around the
world, and the warheads come in from the
opposite side. Any side. Meaning that
all those radars pointed at Russia would
make good drive-in movie screens.

ABM is sort of a dead duck: the onme
face-saving installation is in North Da-
kota, and there won't be any others. But
one wonders how such things could ever
be funded. But then again I remember
once hearing Eric Sevareid, whom some
call a liberal, pontificate on this sub-
ject. "They describe it as a 'thin
shield,'(he said} Why can't we just
spend a few billion more and get complete
protection?” Otherwise canny people, if
fooled by the technologists, will believe
anything.

But the ABM is a beautiful example
of top-down planning-- like the Vietnam-
ese war. I imagine that the Sprint came
about something like this:

“Garfield, our people in Operations
Research have concluded that
Spartan won't work."

"Mmm, yes, sir.”
"Garfield, I want your team to get

on it and find something addi-
tional that will make it work."

Now goes Garfield to his cubicle
and calls meetings, and it becomes clear:
“Lessee now, I can't just say it'll never
work, they want something additicnal,
well, I guess it would have to be..."

Same as Vietnam. "Gee whiz, they say to
search and destroy, 1 guess that must
mean..." Something new, this: the top-

down project of the worst sort, where
the orders go down, and only news of
partial success goes up, rather than the
facts of total hopelessness. As in Viet-
nan.

The sophisticated argument is that
the ABM effort lets our nation "keep its

i “"sharpen skills," in case some-
thing vaguely like this is ever really
needed-~~ and possible. But this overlocks
the overall strategic problem. &ll this
foolishness leads away from the stability
of the deterrent; and that may be what
keeps everybody alive.

(an interesting point to note: a
biologist and population geneticist named
Sternglass claims it doesn't matter: that
human reproduction is so susceptible to
radiation poisoning that just the fallout
from the ABM defense itself-- a few dozen
bombs, say-- would end human reproduction
around the planet. But nobody listens to
Sternglass.)

Incidentally, an illustrious computer
person, Rev. Dan McCracken (author of
good programming texts on most of the
major languages) goes around lecturing
on the futility of the ABM system.

The main reason computer people
should take an interest in this is simple.
Only we know how funny the thing really is:

All those computer programs have
to work perfectly the first time.

THE MITIEST CMrore?

The focus of attention in genetics and
organic chemistry has for a decade now been
the remarkable systems and structures of the
molecules of life, DNA and RNA.

DNA is the basic molecule of life, a long
and tiny strand of encoded information. Actually
it is a digital memory, a stored representation
of codes necessary to sustain, reproduce, and
even duplicate the creature around it.

It is literally and exactly a digital memory.
Its symbols are not binary but quaternary, as
each position contains one of four code molecules;
however, as it takes three molecules in a row to
make up one individual codon, or functioning
symbol, the actual number of possible symbols
is 64-- the number of possible combinations of
four different symbols in a row of three. (I don't
know the adjective for sixtyfourishness, and it's
just as well.)

The basic mechanism of the system was
worked out by Francis Crick and James Watson,
who understandably got the Nobel Prize for it.
The problem was this: how could living cells
transmit their overall plans to the cells they
split into? -- and how could these plans be
carried out by a mechanical process?

The mechanism is astonishingly elegant.
Basically there is one long molecule, the DNA
molecule, which is really a long tape recording
of all the information required to perpetuate
the organism and reproduce it. This is a
long helix (or corkscrew), as Linus Pauling
had guessed years before. The chemical pro-
cesses permit the helix to be duplicated, to
become two stitched-together corkserews, and
then for them to come apart, unwinding to go
their separate ways to daughter cells.

As a tape recording, the molecule directs
the creation of chemicals and other cells by an
intricate series of processes, not well understood.
Basically, though, the information on the basic
DNA tape is transferred to a new tape, an active
copy called "messenger RNA," which be-
comes an actual playback device for the
creation of new molecules according to
the plan stored on the origirnal.

Some things are known about this process
and some aren't, and I may have this wrong,
but basically the DNA-- and its converted copy,
the RNA-- contain plans for making all the
basic protein molecules of the body, and anything
else that can be made with amino acids. (Those
molecules of the body which are not proteins or
built of amino acids are later made in chemical
processes brought about by these kinds.)

Now well may you ask how this long tape
recording makes chemical molecules. The answer,
so far as is known, is extremely puzzling.

As already mentioned, the basic code
molecules (or nitrogenous bases) are arranged
in groups of three. When the RNA is turned
on, these triples latch onto the molecules of
amino acid that happen to be floating by in the
soupy interior of the cell. (There are twenty--
seven amino acids, and sixty-four possible
combinations of three bases; this is fine, because
several different codons of three bases can glom
onto the same passing amino acid.)

Now, the tape recording is divided into
separate sections or templates; and each template
does its own thing. When a template is filled,
the string of amino acids in that section separate,
and the long chain that results is a particular
molecule of significance ‘in some aspect of the
critter's life processes-- often a grand long
thing that folds up in a certain way, exposing
only certain active surfaces to the ongoing
chemistry of the cell.

One theory about the mechanics of this is
that a sort of zipper slide, called the ribosome,
chugs down the tape, attaching the called-for
amino acids and peeling off the ever-longer result.

AR o

t
e LsosOME

y\obil)

Now, here are some of the funny things
that are known about this. One is that there is
a particular codon of three bases that is a stop
code, just like a period in ordinary punctuation.
This signals the end of a template. Another is
that the templates on the tape are in no partic-
ular order, but distributed higgledy-piggledy.
(Geneticists engaged in mapping the genes of a
particular species of creature find that the gene
for eye color may turn out to be right next to
the gene for length of tail-- but where those
are really, and what the particular molecules do
that determine it, are still mysterious sorts of
question.)

Here is some more weird stuff about this.

Large sections of the DNA strand are "dark,"
it turns out, just meaningless stretches of random
combinations of bases that don't mean anything--
or ever get used. This ties in, of course, with
the notion that genetic change is random and
blind: the general supposition is that genetic
mutation tekes place a base or two at a time,
and then something else activates a chance com-
bination in a dry stretch that turns out to be
useful, and this is somehow perfected through
successive 1-base changes during the process
of successive mutation and evolution.

Amazing use is made of these mechanisms
by some viruses. Now, viruses are often thought
of as the most basic form of life, but actually
they are usually dependent on some other form
and hence more streamlined than elemental. Well,
some viruses (but not all) have the capacity for
inserting themselves in the genetic material:
breezing up to the DNA or RNA, unhooking it in
a certain place and lying down there, then being
duplicated as part of the template, then unhooking
themselves and toddling away-- both parent virus
and copy. [can't for the life of me think of an
analogy to this, but I keep visualizing it as hap-
pening somehow in a Bugs Bunny cartoon.

CONTROL MECHANISMS

Now, all cells are not alike. From the first
beginning cell of the organism (the zygote), various
splits create more and more specialized, differ-
entiated cells. A liver cell is extremely different
from a brain cell, but they both date back by
successive splitting from that first zygote. Yet
they have different structures and manufacture
different chemicals.

One simplification may be possible: the
"structure" of a cell may really be its chemical
composition, since cell walls and other struc-
tures are thought to be special knittings ofs
certain tricky molecules. Okay, so that may
reduce the question slightly. How then does
the cell change from being an Original (undif-
ferentiated, zygotic) cell to the Specialized
cells that manufacture particular other complex
chemicals?

One hypothesis was that these other cells
have different plans in them, different tapes.
But this theory was discarded when John Gurdon
at Oxford produced a fresh frog zygote from the
intestinal cell of a frog (which accordingly, in
due time, became a frog de facto). This proved,
most think, that the whole tape is in every cell.

Thus there must be something-or-other
that blocks the different templates at different
times (You there, now you're a full-fledged epi-
thelial cell, never mind what you did before)
and selects among all the subprograms on the tape.

The above remarks seem to be obsolete. The genetic mechanism really seems to be a list processor (see p. 16l
The gene 1s now thought to be divided into four segments,
Initiator, gene proper, and Terminator. As I understand

using associative, rather than numerical addressing.
ni called Promoter,

"" ene V!.nhuu'k»r it, the promoter and terminator zonmes contain codes which mean, simply,
,"", T 3 S— — Start and Stop. The initiator zone, however, is a coded segment which ef-
i hd fectivelyélabels the gene. This initiator area contains a chemical code uni-
que for every gene. As suggested in the above article, we may consider both its logical structure-- its mech-

anisms and effects, considered from a computerman's point of view-- and its chemical structure, or what is
really happening. The genes are turned off by grabbing molecules, or repressors, which glom onto the initiator_(*—))
sections of the genes which they have been specifically coded to repress. Research in this area must now find /

the specific coding of molecules which block and unblock specific genes, and how these fit in the overall grapls
If there is anything to make an old atheist uneasy, it is

of metabolism, immunology, development, and so on.
the extraordinary beauty of this clockwork,

3

Much pressing research in molecular bio-
logy, then, is concerned with searching for
whatever it is that switches different things on
and off at different times in the careers of the
ever-splitting cells of our bodies. Not to men-
tion those of all other living creatures, including
turnips.

COMPUTERISH CONJECTURES

The guys who specialize in this are usually
chemists, and presumably know what they're
doing, so the following remarks are not intended
as butting into chemistry. However, new per-
spectives often give fresh insight; and the matters
we've covered so far might seem to have a cer-
tain relevance.

DNA and RNA, as already remarked, may
without distortion be thought of as a tape. Indeed,
on this tape is a data structure, and indeed it is
a data structure which seems to be involved with
the execution of a program-- the program that
occurs as the organism's cells differentiate.

There is evidently some sort of program
follower which is capable of branching to dif-
ferent selections of (or subprograms) in the
overall program, depending on various factors
in the cell's environment-- or perhaps its age.

Now, it is one thing to look for the par-
ticular chemical mechanisms that handle this.
That's fine. On the other hand, we can also
consider (from the top down) what sort of a
program follower it must be to behave like this.
(This is like the difference between tracing out
particular circuitry and trying to figure out
the structure of a program from how it behaves.)

At any rate, the following interesting con-
jectures arise:

1. The mechanism of somatic reproduction is
a subroutining program follower-- not unlike
the second program follower of the subroutining
display (see p. That is, it steps very
slowly through a master program somewhere,
and with each new step directs the blocking or
unblocking of particular stretches of the tape.

As the program is in each cell, presumably
it is being separately followed in each cell.
(This is sometimes called distributed computing_.)

2. In each cell, the master program is direc-
ting certain tests, whose results may or may not
command program branching-- successive steps

to new states of the overall program. It may

be testing for particular chemical secretions in

its environment; it could even be testing a counter.

3. (This is the steep one.) If this were so,

we might suppose that this program too was stored
on the DNA, in one or more program areas; and
it would therefore be necessary to postulate some
addressing mechanism by which the program fol-
lower canp find the templates to open and close.
(And perhaps further sections of the program.)

4. Indeed, it makes sense to suppose that
such a program has the form of a dispatch table
-- a list of addresses in the tape, perhaps asso-
ciated with specifications of the tests which are
to cause the branching.

Jopsteb bl
ﬁh o g 1o res 1 N
lor ead\ succestug
e et

These wild speculations are offered in the
spirit of interdisciplinary good fellowship and
good clean fun. Whether (1) and (2) have any
actual content, or are merely paraphrases of
what is already known or disproven, I don't
know; somebody may find the rest suggestive.

Two more observations, though. These
are not particularly deep, and may indeed be
obvious, but they suggest an approach.

5. There is definitely a Program Restart: to wit;
whatever it is that turns an old differentiated
intestine cell into a fresh zygote.

6. Cancer is a runaway subroutine.

BIBLIOGRAPHY (for wofe on feft)

Har Gobind Khorana, Willard Gibbs lecture, May 1974,
"Progress in the Total Synthesis of the Tyro-
sine tRNA Gene and Its Control Elements.”

.
U oo, e
mi-
§ - g
1%

gene

ture of subroutining display processors, has |

From all this, one last speculation creeps
forward. HE B%x”
Ivan Sutherland, in considering the struc- NH&I Nﬁx l ?
L J

noted that as you get more and more sophisti- Almost nothing is known about the brain.
cated in the design of a display program fol- Oh, there are lots of. picture-books showing
lower, you come full circle and make it a full- cross-sections ?f brains... Maybe you thought
fledged computer, with branch, test, and arith- it was just a big cauliflower, but it's full of
metic operations. strings and straps and lumps and hardly any-

thing is known about any of it.
If the somatic mechanism should turn out

to have a program follower as described, it is . Cliflical evidence, _of course, tells us
not much of a step to suppose that it might have that if this or that part is cut out, the patient
the traits of an actual computer, i.e., the ability can't talk, or walk, or smell, or ‘_NhBteVGI‘~
to follow programs, branch, and perform manip- But that doesn't come close to telling us how the
ulations on data bearing on those operations. thing works when it does work. The histologists,
the perceptual psychologists, the anatomists,
In other words, the digital computer may are all working at it-- with no convergence.
actually have been invented long before von Beautiful example: the split-brain stuff, which
Neumann, and we may have billions of them 1 just better not even bring up here (see new
i , H rt Brsce).
on our persons already. Maya Pines book areot) By browsing this book you may have more
It may sound far-fetched, but the mechan- We used to dissect brains when I worked sense Og what computers are doing, can do,
isms elucidated at this level are so far-fetched down in Dr. Lilly's dolphin lafb. DOIPhi: It,)'!l‘lams should do.
already that this hardly seems ridiculous. are about 1.2 times the size of ours, and Lilly .
v v quite reasonably pointed out that this might mean What will you do now?
dolphins were smarter than us. R . . .
THE COMPUTER FRONTIER By reading this book in some detail, es-

pecially that difficult machine-language stuff (see

And, of course, the bigger whales even ;
ge "Rock Bottom" and "Bucky's Wristwatch," pp.

Regardless of what's actually in the cell, smarter. We had a killer-whale brain in the

it is clear that being able to adapt molecular deepfreeze that was about 24 feet across. And e - ';)}, or the pieces on specific computer
chemistry, especially DNA and RNA, to computer whales come much bigger than that; the Killer's languages (pp.l67¢5, 3\)Z you really s]ilould.be
storage is a beckoning computer frontier. maybe a quarter the length of the Blue. mentzl.ly .;t)repared to get into programming, if
you dig it.
This would make possible computer mem- @ should point out here that Lilly's pub- .])
ories which are far larger and cheaper than licity on the intelligence of dolphins was a little Maybe you should consider buying your
any we now have. too good: it somehow didn't get mentioned that own minicomputer, for a copple. of t.housand. Or
dolphins are just very small whales, the only Gf ygu're a parent), chipping n with severa.al
Basically we can separate this into two ones you can feasibly keep in a lab. So think families to get one. Or a terminal, and buying
aspects: of whales as the possible super-smarties, not (or cadging as cadge can) time on a time-sharing
just—d_omﬁns.) system. Maybe you should start a computer club,
The DNA Readout. This part of the sys- which makes it easier to get cast-off equipment;
tem would create long molecules holding digital What's that you say? That "brain size if you're kids, write the R.E.5.1.§.T.0.R.8. (p.
information . isn't what counts"? That's an interesting point. 4‘7)' If you have a chance, maybe you should
take computer courses, but remember the slant
The DNA Readin. This would convert it these are likely to have. Or perhaps you prefer

People with small heads are by and large
just as smart as people with big heads. That's
one argument.

back to electrical form again. just to sit and wait, and be prepared to speak up
sharply if the computer people arrive ready to

push you around. Remember:
Weird possibilities follow. One is that

(if chemical memory is generic, rather than However, people have much bigger brains COMPUTER POWER TO THE PEOPLE!
idiosyncratic to an individual's neural pathways) than almost any other animals. That indicates DOWN WITH CYBERCRUD!
knowledge could be set up somehow in "learned" something too.
DNA form, whatever that might turn out to be, A . Computers could do all kinds of things for
and injected or implanted rather than taught. 1 believe that the only other animals with individuals, if only the programs were available.
Weird. very big brains are elephants and whales. (An For instance: help you calculate your tax inter-
anatomical explanation: the weight is supported actively till it comes out best; help the harried
As our ability to create clones improves, on the man by balancing it, on the elephant by credit-card holder with bill-paying by allowing
we could clone new creatures, or genetic "im- a heavy andv comparatively inflexible neck offset him to try out different payments to different
provements"-- which, considering the racehorse by a grappling tool, and in the whale by putting creditors till he settles on the month's best mix,
and the Pekinese, means "those sorts of non- it in the front of a torpedo. But most other then typing the checks; WRITING ANGRY LETTERS
viable modifications supported in human society." anatomies couldn’t manage a big brain, so they BACK to those companies that write you nasty
And of course that ghastly stuff about building can't evolve one. letters by computer; helping with lett_e-;—writing
humans, or semi-humans; having traits that e L in general. You'll have to write the programs.
somebody or some organization, ulp, thinks is Anyhow, so the scientific question is
desirable. .. ' whether big-brained species are smart. Well,

dogs are smarter than rats...
But the real zinger is this one. It might

just be a small accidental printout meant to But about these other guys in our league How do you think computers can help
test the facility, or maybe just a program bug-- and beyond. How do we know socientifically the world?')
that "the size of the brain isn't what counts"? What are you waiting for?
-~ but the system could output a virus Because obviously they're not as smart as we
that would destroy mankind. are, people say. Therefore it isn't brain size

that counts. The depth of this logic should be

evident. (I've even heard people say, "Of course

they're not as smart. They don't have guns."

BIBLIOGRAPHY Y &)

Pay close attention to an elephant sometime.

James D. Watson, Molecular Biology of the Gene. ° ¢
Beautifully written; meant for highschool
science teachers. But potentially formi-
dable; if so, start with his autobiographical
The Double Helix, which is a gas.

Working elephants in India respond to some
500 different oral commands.

Can you think of a 501st thing to ask an

elephant to do? (I rather suppose it could oblige.)
Mark Ptashne and Walter Gilbert, "Genetic

Repressors." Scientific American, June

Anyway, the dozen whales I've known per-
1970, 36-44.

sonally were smart as hell.

S.E. Luria, Life: The Unfinished Experiment.
Scribner's.

Lewis Thomas, The Lives of a Cell., Viking, $7.

Eloquent writing to popularize, among
other things, the New Genetic view that

your modern animal cells, and mine, ac- ¥t used to be believed that memory was
tually contain various fungi and other exclusively a matter of synaptic connections--
stray ding-a-lings that slid into one of the gradual closing of little switches between
our ancestors and found useful work, join- nerve cells with practice.

ing the basic genetic program.

It is now known that temporary or
short-term memory is synaptic, but something
else takes place after that. It's believed that
after a certain period, and it has something

° TE s to do with rest and sleep, memories are trans-
8@“5 &C “?U K ferred to some other form, presumably chemical.

But how?
It used to be fashionable to say, ' .
"The brain is a computer.”) My frlex}d Andrew J. .Smger hz?s a beau-
tiful hypothesis that wraps it up. His guess
But now people say, "The brain is that memories are moved from synaptic

storage to DNA (!) storage during dreaming,
or more specifically REM sleep. I like that one.

Fashions change. THE COPPER MAN WALKED OUT OF THE ROCKY CAVERN

is a hologram.™

62

N FHAT
Mconwri(!

Everybody blames the computer.

People are encouraged to blame the
computer. The employees of a firm, by
telling outside jpeople that it's the
computer's fault, are encouraging public
apathy through private deceit, The pre-
tense is that this thing, the computer,
is rigid and inhuman (see "The Myth of
the Computer," p. 9) and makes all
kinds of stupid mistakes.

Computers rarely make mistakes. If
the computing hardware makes a hardware
error in a billion operations, it may
be noticed and a repairman called. (Of
course, once in a billion operations is
once in a thousand seconds, or perhaps
every ten minutes. That ought to be
mentioned.) Anyhow, innocent gadgetry
is not what forces you to make stupid
multiple choices on bureaucratic forms;
mere equipment isn't what loses your
subscription records;

IT'S
THE
SYSTEM.

By system we mean the whole setup: the
computer, the accessories that have been
chosen for it, its plan of operatiom or
program, and the way files are kept and
complaints handled.

Don't blame the computer.

Blame the system; blame the program-
mer; blame the procedures; best of all,
blame the company. Let them know you
wi take your business to wherever they
have human beings. Same for governmental
agencies: write your congressman. And
so on.

A Basic elowler

we should all practice and have ready at the
tip of our tongues:

WHY THE HELL NOT? YOU'RE THE ONES WITH
THE COMPUTERS, NOT ME!

Let's froth up a little citizen indignation here.

ACONT NOWBEES

In principle we no longer need account
numbers.

Now that text processing facilities are
available in most (if not all) major computer
languages, the only excuse for not using these
features is the programmer's notion of his own
convenience-- not that of the outside customer
or vietim.

Example. Someone I know got brand new
Ampeningets finpunte- 21d Gamie Sbemeise credit
cards. He made no note of their numbers. Then
he lost them both. Duly he reported the losses.
Neither service could look him up, they said,
without the numbers. Not having used them, he
had no bills to check. Even though he was the
only person at that address with anything like
that name. And why not, pray tell? Either be-
cause they were fibbing, or because they had
not seen fit to create a simple straightforward
program for the purpose. (See Basic Rejoinder,
nearby.)

I have heard of similar cases involving
mejor life insurance companies. Don't lose the
numbers. Let's all dance to it:

When anything is issued to you,
Write the number down.

USE
zip
CODE

"compuTERS "
THAT boN'I" ANSWER.

Few of us can help feeling outrage at
the book clubs, or subscription offices, or
billing departments, that don't reply to our
letters. Or reply inappropriately, with a form
printout that doesn't match the problem.

First let's understand how this happens.

These outfits are based on using the com-
puter to handle all correspondence and trans-
actions. The "office"” may not have any people
in it at all-- that is, people whose job it is
to understand and deal sensibly with the prob-
lems of customers. Instead, there may just be
keypunch operators staffing a Batch System, set
up by someone who has long since moved on.

The point of a batch system (see p.‘/s’)
is to save money and bother by handling every-
thing in a controlled flow. This does not mean
in principle that things have to be rigid and
restrictive, but it usually means it in practice.
(See "The Punch Card Mentality," p. 29 .)

The system is set up with only a fixed number
of event types, and so only those events are
recognized as occurring. Most important, your

flow. While there may be provision for excep-
tions-- one clerk, perhaps-- your problem has
not seemed to him worthy of making an excep-
tion for.

Here is my solution. It has worked
several times, particularly on book clubs that
ignored typed letters and kept billing me
incorrectly.

Get a roll of white shelf paper, two or
three feet wide and twenty or more feet long.

Write a letter on the shelf paper in magic
marker. Make it big, perhaps six inches to a
word. Legibility is necessary, but don't make
it too easy to read.

Explain the problem clearly.

Now take your punch card-- you did get
one, didn't you, a bill or something?-- and
mutilate it carefully. Tear it in quarters, or
cut it into lace, or something. But make sure
the serial number is still legible. Staple it

lovingly to your nice big letter.

Now fold your letter, and find an envelope
big enough for it to fit in, and send it, regis-
tered or certified mail, to ANY HUMAN BEING,
ACCOUNTING DEPARTMENT, or whatever, and
the company's address. ’

This really works quite well.

I am assuming here, now, that your prob-
lem has merit, and you have been denied the
attention required to settle it. If we want justice
we must ourselves be just.

There is one further step, but, again, to
be used only in proportion to the offense. This
step is to be used only if a theritorious commun-
ication, like that already described, has not
been properly responded to in a decent interval.

We assume that this unjust firm has sent
you a reply envelope or card on which they
must pay postage. Now carefully drafting a
follow-up letter, explain once again, in civil
language, the original problem, your efforts
at attention, and so on. Now put it in a package
with a ten or twelve-pound rock, affix the
reply envelope to the outside, and send it off.

The problem, you see, has been to get
out of the batch stream and be treated as an
exception. Flagrantly destroying the punch card
serves to remove you from the flow in that fash-
ion. (However, just tearing it a little bit prob-
ably won't: a card that is intact but torn can
simply be put in a certain slot of the card-punch
and duplicated. Destroy it good and plenty.)

In all these cases remember: the problem
is not that you are "being treated as a number,"
whatever that means, but that your case does
not correctly fall in the categories that have
been set up for it. By forcing attention to your
case as an exception, you are making them
realize that more categories are needed, or more
people to handle exceptions. If more people do
this when they have a just complaint, service
will improve rapidly.

JUNK WATL

The people who send it out like to call it
personalized advertising and the like. But most
of us call it Junk Mail. And its vagaries are
NOT THE POOR COMPUTER'S FAULT. What gets
people angry derives from the system built
around the poor computer.

You may wonder why you get more and
more seed catalogs, or gift-house catalogs, as
time goes on, even though you never order any-
thing from them. Or why a deceased member
of the household goes on getting mail year
in and year out, regardless of your angry post-
cards.

How does it keep coming?

Through the magic of something called the
Mailing List.

And especially the peculiar way that
mailing lists are bought and sold.

DIRECT
MAIL

THE PERSONAL MEDIUM

Now, a mailing list is a series of names
and addresses of possible customers, stored on
computer tape or disk.

You can buy the use of a mailing list.
But you cannot buy the mailing list itself.

Suppose you have a brochure advertising
pumpkin-seed relish, which you suggest has
rejuvenating powers. You want this brochure
to go out to rich college graduates.

You go to a mailing-list house.

"l cannot sell you this mailing list out-
right," says the jolly proprietor, "for it is my
business to sell its use again and again, so
I do not want anybody else to have a copy of
it." So you leave 2500 pumpkin-seed relish
brochures with the mailing list company, and
pay them a lot of money. And they swear on
a stack of bibles that they have mailed the bro-
chures to their special list of rich college grad-
uates.

Well, let's say you get 250 sales from
that mailing. (10% is fantastically good.) But
out of curiosity you go to another mailing-list
house and have another mailing sent out-- this
one to people who have low incomes and little
education.

This time you get 15% orders.
Now guess what you are acquiring.

A mailing list of your very own. Of peo-
ple who eat pumpkin-seed relish.

Mailing lists are, you see, generally ren-
ted blind, with no chance to see the addressees
or check as to whether they've already been
mailed to.

And that explains all the duplications.

If an advertiser is going after a certain
type of customer, and goes to several mailing-
list houses asking for mailings to that particular
type of customer, chances are some people will
be on several of the lists. And since there's
no way to intercompare the lists, these poor
guys get several copies of the mailing.

(Another way this can happen is if some
cheapskate has his own mailing list and doesn't
check it for repeats of the same name. But
writing the computer program to check for
repeats of the same name is not easy-- there
might just be a Robert Jones and a Rob Jones
at the same address-- and these things are not
usually checked manually. They're big.)

Another possibility exists for eliminating
duplications when you rent mailing lists. You
can bring in a magnetic tape with your mailing
list on it, and they can send out the mailing
only to the members of their'list who are not
already on your list. That way you still can't
steal their list, since the tape is on their
premises. The trouble is, they can steal your
list, by making a copy of the tape. Oh dear.

One possibility, nice and expensive, is to
rent a number of mailing-lists from a single
mailing-list house, with them guaranteeing that
they'll compare all the lists you choose and
not send to any person more than once.

But as you may be suspecting, this costs
money. All this screening and intercomparing
requires computer time, and so, even though
you are getting a more and more perfect mailing.
you are paying more and more and more money
for it. So you can see why reasonable business-
men are willing to send out ads even when they
know some recipients will get several duplicates.

Another interesting point. There are
mailing lists for all kinds of different possible
customers. The possibilities are endless.
Minority-group doctors., People interested in
both stamp collecting and flowers (you'd have
ﬁet a company with both lists, and have them
go through them for the duplicates... you get
the idea).

Note that mailing lists are priced according
to their desirability. Weeded mailing lists, fea-
turing only Live Ones, people who've ordered
big in recent times, are more expensive. Lists
of doctors, who buy a lot, are more expensive
than lists of social workers. And so on.

Then there's the matter of the pitch.

The ad's phrasing may be built around
the mailing plan. Some circulars come right out
and tell the recipient he's going to get several
copies because he's such a wonderful person.

THEN there are those advertisements that
are actually printed by the computer, or at least
certain lines are filled in with the recipient's
name and possibly some snazzy phrases to make
him think it's a personal letter. Who responds
to such things I don't know. My favorite was
the one-- I wish I could find it to include here
-- that went something like

You'll really look swell, Mr. Nelson
walking down Main Street of New York
in your sharp-looking new slacks...

I don't know whether I enjoyed the spaces or
the Main Street more.

But you see how this works. There's
this batch-processing program, see, and the
names and addresses are on one long tape, and
the tape goes through, and the program takes
one record (a name and address), and decides
whether to call the addressee "Mr.," "Ms." or
whatever, and then plugs his name into the
printout lines that give it That Personai Touch;
and then the mailing envelope or sticker is
printed; and the tape moves on to the next
record.

We may look forward to increasing en-
croachments on our time and trust by the direct
mail industry: especially in better and better
quack letters that look as though they've really
been personally typed to you by a real human
being. (It is apparently legal for letters to be
signed by a fictitious person within a company.)
In the future we may expect such letters to be
sent on fine paper, typed individually on good
typewriters, and convincingly phrased to make
us think a real personal pitch is being tendered.

There is, however, a final solution.

YOU CAN GET OFF ALL MAILING LISTS
-- that is, the ones "participating" in the
Association-- by writing to

Direct Mail Advertising Association
Public Relations Department

230 Park Avenue

New York, NY 10017

They will send a blank. If you fill it in
they'll process it and delete your name from
mailing lists of all participating companies.

Presumably this won't help with
X-rated or stamp-collecting lists, but it
ought to keep you from getting semiannual
gift catalogs from places like The House of
Go-Go Creative, Inc. and those million
solicitations from Consumer Reports and
that File Box company .

Metropolitan Division X WSV h——
P.O. B:x 5144 Church Street Station, New York, N.Y. 10048y | entor Vice
Brauch 014

Theodor H Nelson
458 ¥ 20Th St
New York,Ny 10017

Fue-mNS_

Great news| for tamily!

Wouldn't ydu like your money to work for you full ti
even when fou're asleep?

ne...

amily can save...right et their own

&% passbook Savings Plan which
~+ nuarterly or even

o
g0t 2“ 1CE

Dear Reader: . .
© any indica-

If the 1list upon which Iizzﬁwzill)ilxsggz‘iic py inds
Quite frankly, your

from the peneral popula-
pect for cverything

tion, this is not the firf.t/-._
ubscription_lettor.you-trccelive.
education and income scl you apart
tion and make you Aa highly~rated pros
from magaz.j_nes_.m_nw‘s. ‘
You've undoubtedly "heard everything" by nt)w 11; z}gzmway
of promises and premiums. I won't try to top auny o© .

If you subscribe to Sewoweew, you won't get rich quick.
You won't bowl over friends and busineesc 7

clever remartv~

X S
o WE 9\\< N s Qe
Daar Ar, yej son: \/OO"\‘\\’\Q(& “i&e‘googi\' S*

Let's get straigh
t
Nary letter. It's aqsub;é’ {
It can save You money off
hgm? Won't appeal toma
“I1ll appeal to vou

the point.
Tlption offer
the rg

This is not an ordi-
s from a magazine.
And if it per-
we think it

Because 1t | e

Y dives yoy f P - S SR S

You call up the bank and ask your balance
and they say, "I'm afraid I can't get that infor-
mation. You see, it's on a computer."

(See Basic Rejoinder, nearby.)

Well, the reason it's this way is that
they're handling things in Batch (see p. 45)
and they aren't storing your account on disk,
or if they are they don't have a terminal they
can query it with.

But to say that they can't get the infor-
mation because it's on a computer is a typical
use of the computer as an excuse (see Cyber-
crud, p. 8); and second, if the person be-
lieves this to be an explanation, it's a sign of
the intimidation and obfuscation that have been
sown among the clerks who don't understand
computers.

Write them a letter. Change banks. Let's
get the banks to put on more and more citizen
services. Rah!

b4

THINGS YoU \Y RON INTo

Everywhere you(go computers lurk. Yet
they wear so many faces it's impossible to figure
what's going on.

Guidelines are hard to lay down here, but
if you look for examples of things you've already
run into in this book, it may help some.

Terminals you can presumably recognize.

Microprocessors are harder, because you
don't see them. Good rule-of-thumb: any device
which acts with complexity or apparent discretion
presumably incorporates a terminal, minicomputer
or microprocessor.

Two other things to watch for: transaction
systems and data base systems.

A transaction system is any system that
takes note of, and perhaps requires verification
of, transactions. Example: the new point-of-sale
systems (POS). This is what's about to replace
the cash register.

In the supermarket of the future, every
package will have a bar code on a sticker, or
printed on the wrapper. Instead of the checkout
clerk looking at the label and punching the a-
mount of the sale into the cash register-- an
error-prone and cheat-prone technique which
requires considerable training-- your New Im-
proved Checkout Clerk will wave a wand over
the bar code. The bar code will be sensed by
the wand, and transmitted to a control computer,
which will ring it up by amount and category
(for tax purposes), and even keep track of
inventory, noting each object as it is removed
from stock.

Here is what your bar code will look like.
(A circular code, which was already turning up
on some TV dinners, has been eliminated by the
bar code. This is unfortunate, since the scan-
ner necessary to read the bar code is electron-
ically more complicated, but there we are.)

P 5TaNDARD SOL

The potential dangers of transaction systems
are fairly obvious from the supermarket example,
but they fan out in greater complexity as the
systems get more complex. Credit cards, for
instance, were only made possible by computers
and computerized credit verification; but it is
only now, fifteen or so years into the credit-card
era, that laws protect the cardholder against
unlimited liability if he loses it.

Yet we plunge shead, and it is obvious why.

Transaction systems managed in, and by, com-
puters allow more flexible and (in principle)
reliable operations. For instance, in the secu-
rities business, thousands of stock certificates
are lost and mislaid, and the transaction paper
must be typed, shuffled, put in envelopes, sent,
opened, shuffled again, compared... all by hang.
Little wonder they're working on an Automated
Stock Exchange System. But if it's taken fifteen
years to get the implicit bugs out of credit cards

. not to mention the frequent allegations that
much Wall Street "inefficiency" is actually the
disguised marauding of Organized Crime...
uh-oh. (If they can buy the best lawyers, they
can probably buy the best programmers.)

Then there is the Checkless Society. This
is a catchphrase for an oft-advocated system that
allows you to transfer money instantly by compu-
ter; supposedly some. such thing is working al-
ready in France. Again, they better get it pretty
safe before a sane man will go up in it.

The safety of such systems is of course
a matter of immense general concern. IBM
portentiously (sic) announced its intent to spend
millions of dollars on "computer security" a few
years ago. However, a few million dollars is
not going to plug the security holes in the IBM
360, and evidently the 370 is just about as vul-
nerable.

(In this light, even the greatest IBM-haters
will have to admit that there may be a proper
motive behind IBM's current refusal to let others
use its new operating system language: that way
they may be able to prevent special holes in the
system from becoming known to programmers.)

It is interesting that one profession seems
to be stepping forward to try to improve this
situation: the auditing profession, devoted to
verification of financial situations of companies,
seems to be branching into the verification of
computer programs and the performance of com-
plex systems. This will be great, if it works.
Cynics, however, may note that auditors have
permitted some remarkable practices in the
"creative" accounting of recent years. (Obvious-
ly the way to check out the sa'fety of big systems
is to offer bounty to those who can break its
security. But who is willing to subject a system
to a test like that?)

"(CONPUTER DATING"

should of course be called MATCHUP DATING,
since there is nothing particularly computerish
about either the process or its intended result.
But there we go again: word-magic, the impli-
cit authority of invoking the word Computer.
(S8ee "Cybercrud,” p. g

In the early sixties, a perky young fella
at the Harvard B-School, I believe, one Jeff Tarr,
came up with the notion of a computerized dating
service. The result was Operation Match, an
immense financial success, which sort of came
and went. No followup studies were ever done
or success statistics gathered, unfortunately,
but they certainly had their fun.

The basic principle of "computer dating"
is perfectly straightforward. Applicants send in
descriptions of themselves and the prospective
dates they would like to meet. The computer
program simply does automatically the sorts of
thing you would do if you did this by hand:
it attempts to find the "best" match betweeen
what everybody wants and what's on hand.

Obviously this could be a matter for
serious operations research: attempting to dis-
cover the best matchup techniques among things
that never really fit together, detail for detail;
trying to find out, by followup questionnaires,
what trait-matchings seemed to produce the best
result, etc. But such serious matchup-function
research remains, so far as I know, to be even
begun.

Obviously there are several problems.
Demographically it is almost never true that
"for every man there's a woman"-- in every
age-bracket there's almost always an imbalance
of the opposite sex in the corresponding eligible
age-bracket, either too many or too few. But

|
|
i
I

1l
iy |

g 12345157 890M |

more than that, there is little likelihood that
y N the traits women want are adequately represen-
_— ted among the available males, or vice versa.
For introduction services it's obviously worse:
there is no balance likely between what comes
in one door and what comes in the other. The
service can only do its best with the available
pool of people-- and make believe it's somehow
made ideal by the use of the computer. It's
like an employment office: applicants don't
THE COMPUTER GRAVEYARD match openings.

0’
Hereabouts are a few other computerish
things you may run into which more or less

(Incidentally, while this does arrest the ! .
defy categorization.

classic cashier's cheat-- ringing up excessive

purchases on the customers, then having a con-
federate walk through equivalent amounts-- the __K_’__\d >
consumer is still entirely prone to cheating by
the store in the computer program. Remember,
it's 1974. So you still may have to check your

tapes, folks.) i
? In the mid-sixties there was a junkyard

in Kingston, N.Y. that was like an automobile
graveyard-- except piled high with dead com-

Numerous other dating services have ap-
peared, some of which don't even pretend to
use the computer (and others which claim to
be a registry for nonstandard sexual appetites),
but none that's gotten the attention of the orig-
inal Project Match.

Data base systems are any systems which
keep track of a whole lot of stuff, often with
complex pointer techniques (see "Data Structures,” puters.
p. 26). A cute example is the message service
now offered by Stuckey's snack/souvenir stands !
all over the country. You may leave messages The guys would §mash them with sledgehammers,
for your friends or loved ones on the road; they or other awful t-hmgs, to make sure they could
can stop at any Stuckey's and ask for their never work again. Then you cou%d buy t-he
messages, just as if it was a telephone answering circuit cards. 1 saw 14913 flve_hlgh, Univac
service. (You're listed by your phone number-- File Computers, tape drives... it was an elec-
is this to avoid pranks? And what about people tronic nut's paradise. You could decorat.e your
with no phones?) It's free and a neat idea. den with huge old control panels, mag disks
(Obviously, the messages are stored on the disk and whatnot. It seems to be gone now. They
of a big central computer, and queried from forbade pictures.
terminals at the individual stands.)

They were from various manufacturers.

But there's no question who got the best
dates out of that one. Jeff Tarr.

DO YOU GOT RHYTHM?

A device called the BIO-COMPUTER (trade
mark) purportedly helps you predict your "body
beats," telling you what days are the right sort

| Se\“p%’\ Checker Terwnal G,\w\t,“,‘, S Encrseo of time to do particular things in terms’ of your
data-base system. For instance, suppose you own biological energies. The object costs $15

oY X e (s gof) Croen) (83 01
make an airline reservation. The airline has a postpaid from BIO-COMPUTER, Dept. CLB/DM

AR _,
large data base to keep track of: the inventory 5 . (Why not?), 964 Third Ave., NY NY 10022.
of all those armchairs it's flying around the l/\ .
3 eoCes
country, and the list of who so far have announced @ /\ PN P, The question with all such special purpose

plans to sit in them, and in some cases what devices-- "fishing computers,” horse-racing
they intend to eat. When you buy.your‘ tlfrkf%t, computers, etc., is always whether the theory
that transaction then gets you put in the listing. and formulas which are built into them are cor-

Same for car rentals and so on. {,\Ow gﬁNK«M'%RB C,"(QKS WR CKE&('{* rect. There is no ready way to tell.
C:'UYCQ= bi;:‘iﬁi\)

Now, most of the big systems you run into ‘V\"L\G\ Jor
tend to be a combination of transaction and 2 e
ychwser

ASTROFLASH, etc.

There are various computerized astrology
services. Given your date of birth, and hour
if known, they'll type out your signs, explan-
ations, ete, Presumably there is a text network
which the system selects among according to
"reinforeing tendencies," etc., among the entities
thought to be influential.

Conceivably this could do nine-tenths of
what a talented human astrologer does, and with
the same validity, whatever that may be. In
any case it's probably a lot cheaper.

Is it too soon for a
computer pornography contest?

{Is it too late?)

See p. {)W\'}/C

SUPER- CuSTOMTZATION

People think computers are rigid
and invariant. This (as stated else-
where in this book) is due to the systems
which people have imposed, and then
blamed, on the computer.

The fact is that computers are now
being set up to give new flexibility to
manufacturing processes. Computers,
directly connected to milling machines,
grind metal into any conceivable shape
much faster than a human craftsman. To
change the result, change the program--
in a fraction of a second. Fabric des-
ign has been done on computer screens;
the obvious next step is to have the
computer control the loom or knitting
machine and immediately produce what-
ever's been designed.

Custom clothing: soon we may look
forward to tailoring services that store
your measurements and can custom-tailor
a suit for you to any new fashion, in
minutes. (But will the price beat Hong
Kong?) Customized printed matter is
already here (see 'Me-Books," p.@j}
Wherever people want individual vatia-
tions of a basic manufacturing process,
computers can do it.

The Telephone Company (at least in
Illinois and Indiana) offers a speaker on
"The Shadowy World of Electronic Snooping”
to interested groups.

Modern menage, she 29, interested
in recursive relations and reverse

Polish culture. Phone a must.
Contact box RS=232 (s see p. DM3S),

BETCHA DIDN'T KNOW...

that the IRS hasn't been able to do instant
matching of W-2 forms to tax returns. That'll
be fixed in fiscal '74, and interest and dividend
payments in '75. (TIME, 31 Dec 73, 17.)

"(OMPURER, FLECTIN

PReHICTIONS"

This is an outrageous misnomer. The
computer is only carrying out, most speedily,
what hardened politocoes have always done:
FACTIONAL ANALYSIS, now possible with new-
found precision on the basis of certain election
returns.

This is based on the cynical, and fairly
reliable, view that people vote according to
what faction of the greater populace they belong
to-- middle-class white liberals, blue-collar
non-union members, and so on. The factions
change slowly over time, and people move
among them, but the fact of factionalism remains
unchanged.

Well. By the close of a major election
campaign, most factions can be pretty well pre-
dicted, especially as to presidential choice, or
what proportion of that faction will go for a
given candidate.

But some factions' reactions are not cer-
tain up to the day of the ballot.

So. "Computer predictions” of elections
basically break the country into its factional
divisions, state by state and district by district,
and then tabulate who can be predicted to vote
for whom on a factional basis.

Then what's the suspense?

The suspense comes from the uncertain
factions-- groups whose final reactions aren't
known as the election starts.

Certain election districts are known to
be chock full of the types of people whose reac-
tion isn't known.

The final "computer prediction” simply
consists of checking out how those districts
voted, concluding how those factions are going
in the present election, and extending this pro-
portion through the rest of the country.

It's often painfully accurate-- but, thank
god, not always. When it isn't don't blame
"the computer.” Thank human cantankerosity.

The VW CHECKOUT COUPLER

may or may not be a real computer-- friends
have told me it isn't-- but it's certainly a good
idea.

When you pull your late-model Volkswagen
into a desaler's service area, the guys can just
roll out a cable and plug it into the correspons
ding socket in your vehicle. At the other end
of the cable is some sort of device which tests
a series of special circuits throughout the car
for Good Condition. These circuits indicate
that things are working properly-- lights, plugs,
points, brakes and so on.

This is the same technique used by NASA
up to the final moment of COMMIT LAUNCH-- a
system of circuits monitors the conditions of
whatever can be monitored, to make sure all's
functioning well. It's more expensive to wire it
up that way, but it makes checking out the
rocket-— or the car-- that much easier.

)

N

C—=

SIC TRANSIT

Some of the zappier new Urban Transit
Systems give you a ticket with a magnetic stripe
on the back. Each time you ride you must push
the card into an Entrance Machine, which pre-
sumably does something to the stripe, till finally
the ticket runs out and you have to pay more
money .

Secrecy of the recording code is an impor-
tant aspect of the thing. Indeed, waggish gossip
claims that some such systems start with a blank
magnetic stripe and just add stuff to it, meaning
the card can be washed clean with a magnet by
larcenous commuters. But this seems unlikely.

YOUR AUTOMOBILE COMPUTER

computers in our cars? We refer here to two
things—-

65

Didja know, huh, we're going to have

anti-skid controllers, which are really
just special circuits-- you know,
"analog computers"”-- to compensate
among skidding wheels. Turns out
that this is apparently more sensi-
tive and reliable than even your good
drivers who enjoy controlling skids.
Already advertised for some imports.

grand bus electronics (see p. le). Since
the electrical part of the automobile
is getting so blamed complicated,
the Detroit Ironmongers have decided
to switch to a grand bus structure
instead of having all those switches
and things separate anymore. Should
make the whole thing far easier to
service and customize.

Presumably this will all be
under the control of a microprocessor.
(See p.*4) This means that the
car can have things like a Cold-
Weather Startup Sequence-- a program
that starts the car, turns on the
heater, monitors the engine and
cabin temperature, and bleats the
horn, twice, politely when it's all
ready-- all at a time preset by the
dashboard clock.

Presumably Detroit is not yet
planning to go this far. But because
of the auto industry's anomalously
huge influence in America, some have
expressed the fear that this move
-- toward the integrated-circuit,
digitally-controlled grand bus--
would effectively put Detroit in con-
trol of the entire electronics industry.

The ever-clever Japanese are computerizing
faster, better and more deeply than we are.

They now have a prototype taxi operating
under computer control. They're calling it, at
least for export, Computer-controlied Vehicle
System (CVS).

Basically it's like an Elevated Railway--
you climb up and wait-- but when you get in,
you punch a button for your destination. Accor-
ding to Hideyuki Hayashi of the Ministry of In-
dustry and International Trade, the system will
be operational in Tokyo within the decade, and
is the "cleanest, safest, quickest transport sys-
tem ever devised by man." Think fast, Detroit.

(A nice point: one of the most important
features of such a system is that the vehicles
don't react to each other, as do vehicles in the
existing Human-controlled Vehicle System (HVS).
A whole line of the cars can be accelerated or
slowed simultaneously, a crucial aspect of their
flexibility and safety. Nothing can possibry

go long.)

(Leo Clancy, "Now-- Computer-Controlled,
Driverless Cars," National Enquirer 3 Mar 74,
24-5.)

THOSE THINGS ON THE RAILROAD CARS

As we lean on the fence a-chawin' an'
a-watchin' the trains go by, we note strange
insignia on their sides, in highly reflective
Scotch-Lite all begrimed by travel.

Basically it's a stack of horizontal stripes
in red, blue and other colors. This is ACI,
for Automatic Car Identification. It may yet
straighten out the railroads.

In this neolithic industry, it is not known
at any given time where a railroad company's
cars are, and some peculiar etiquette governs
their unrequested use by other firms in the
industry. Yet the obvious solution may come
about: a running inventory of where all the cars
are, where each one is going, what's in it,
and who that belongs to. But, of course, that's
still in the works. Revolutionary ideas take time.

66

THe £38

The national phone company (usually
called affectionately, "Ma Bell") has drastically
changed its switching methods in the last few
years. They are replacing the old electromech-
anical switches, or "crossbars," with a new
device called the ESS, or Electronic Switching
System. If there's one in your area you may
hear about it in their jolly news sheet that you
ret with the bill.

In the old crossbar days, a phone con-
nection was a phone connection and that was
that. Now, with the ESS, all sorts of new com-
binations are possible: the ESS has stored pro-
grams that determine its operation. If you
dialled a non-working number, it jumps to a
program to take care of that. It does all sorts
of things by special program, and new programs
can be created for special purposes. Now the
phone company is trying to find the services
that people will pay for. Having calls rerouted
temporarily to other numbers? Linking up
several people in a conference call? Storing
your most-called numbers, so you can reach
them with a single or double digit?

These particular services are now being
offered experimentally.

The way it works is this: there are a
number of programs stored in a core memory;
the only "output device" of the system consists
of its field of reed switches, arranged to close
circuits of the telephone network.

fREGEKM
FolLLoWER

Luypds:
\#ﬁw tzﬂ bow

swiTehes we. 6}

Depending on the numbers that have been
_dialled, and whatnot, the ESS jumps to a specific
program, and that tells it to connect an incoming
call to particular other circuits, or to ring other
lines, or whatever.

it's really neat.

There are only a couple of things to worry
about.

One is that it makes wiretapping, not a
complex bother involving clipped wires and men
hunched over in cramped spaces, but a simple
program.

Another is that some people think that
blue-boxers (see nearby) may be able to program
it, from the comfort of their own homes. Mean-
ing that not just court-authorized wiretaps, but
Joe Schmoe wiretaps, would be possible. Let's
hope not.

TELAVTOGRAPH

This has been around for decades, and
has nothing to do with computers, but isn't it
nice?

You write with a pen attached by rods
to a transmitter; somewhere else, a pen attached
by rods to a receiver duplicates what you have
written.

What is being transmitted consists of the
measured sideways motion ("change in x"), the
measured up-and-down motion ("change in y"),
and the condition of the pen ("up" or "down").
What would these days be called "three analog
channels, multiplexed on a single line."

These only cost a couple of hundred dollars.

Why has nobody been using them for computer
input?

’ BEARNABY'S

Sugar Creek, Texas will have 3000 homes
with a minicomputer-based alarm system. Evidently
various automatic sensors around each house sniff
for fires and burglars, as well as providing panic
buttons for medical emergencies.

The system uses dual Novas (one a backup),
and prints out the news to fire and police dispatchers

on a good old 33ASR Teletype. (Digital Design,
May 73, 16.)

T

ONE OF THOSE MYTHS

"Overpay your phone bill by one cent.
It drives the computer crazy."

Nope. The amount of payment gets
punched in and goes through the gears
quite normally .

If you want to put together your own computer-on-a-chip,
or any other complex integrated circuit, a complete simulation-

verification-layout-and-fabrication service is available from

Motorola, Semiconductor Products Div., P.O. Box 20924, Phoenix,
Arizona. Presumably it costs a mint, but after that you can roll

out your circuits like cookies.

Your circuit is overlaid on their beehive-chip of logical
subcircuits, called a Polycell. You use their MAGIC language
(Motorola Automatically Generated Integrated Circuits), which

then feeds a resulting circuit data structure to a program called

SIMUL8 (yuk yuk) to try out the circuit without building it.

That way you can supposedly be sure before they make the final

masks.

I always figured that the day of Computer
Hobbyism would arrive when the folks at Heathkit
offered a-build-it-yourself computer. But you
know what they came out with instead last year?

A general interface for hooking things to the PDP-8.

e

Minicomputers handle various
control functions in our mighty
new Aeroplanes and Ships of
the Ocean. =

Uit
\\\
,,

It was a truly stellar group that reported to
Judge Sirica on 15 Jan 1974 that the 18-minute
Watergate tape buzz had at least five starts and stops.

The six panelists included:

Richard Bolt, a founder of

Bolt, Beranek and Newman, Inc.
Franklin Cooper, head of

Haskins Laboratories, @Pp\:)
Thomas Stockham, audio resynthesizer

extraordinary (see p.‘yl\ nm

The news, however, generally referred to
them as "technicians.”

a swell video game now in bars, probably
controls the four-player pingpong on the screen
with a minicomputer or microprocessor.

Especially exciting is the social possi-
bility of horizontal screens for other fun inter-
personal stuff. As well as collaborative work.
(But boy, let's hope the radiation shielding is
good.)

8]
o]

The Computer Diet by Vincent Antonetti (Evans Pub.)
shows the author sitting on the deskplate of a 360 console.

The inside consists principally of charts he recom-
mends for weight loss. "The power of a modern digital
computer" interpolated the tables. A slide rule might have
have been simpler.

The thing is, he presents a paper on the thermo-
dynamics of weight loss which may be important; in this he
states the difference equations which are the heart of his
diet. And these may indeed be perfectly valid. So why not
call it what it is, The Thermodynamic Diet?

____,

Kirk Brainerd, of L.A., is using compu-
ters for a registry of people with something to
teach. He hopes that if people are mutually a-
vailable to each other at a deep enough level,
people can begin to act out of altruism in general.

“Me-BeoKs -

Would you believe that the greatest avail-
able computer service is for the kiddies?

For four bucks and a half, an outfit called
Me-Books will send, to a child you designate,
a story of which he is the hero, in which his
friends and siblings appear, and whose action
involves his address and birthday.

Kids adore it. Children who don't like
reading treasure the volumes; children who do
like reading love them just as much.

I can personally report, at least on the
basis of the one I ordered My Friendly Giraffe)
that the story is beautifully thought out, warm,
loving, and cleverly plotted. In other words,
far from being a fast-buck scheme, this thing
has been done right. It's a splendid children's
story. (I won't reveal the plot, but the Giraffe's
birthday, name and home address are related
to those of the protagonist.)

Moreover, it has three-color illustrations,
is on extra-heavy paper and is bound in hard
covers.

(In case you're interested, any of the
three programming languages expounded earlier
in the book would be suitable for creating a
Me-Book: depending on the language chosen,
the holes left for the child's own name would be
alphabetic variables, segment gaps or null arrays
-- anyhow, you could do it.)

Astute readers of the Me-Book will note
that while it's not readily obvious, only the lines
on which personalized information appear have
been printed in the computer's lineprinter. The
others have all been pre-printed on a press.
Indeed, the personalizations appear on only one
side of each page, the whole book being one
long web of paper that's run through the line-
printer just once before being cut and bound.
But it's so cleverly written and laid out that the
story moves on beautifully even on the pages
that don't mention the child's name.

As an experiment, the author tried sending
for a copy of My Friendly Giraffe as told about
a little boy named Tricky Dick Nixon, residing
at 1600 Pennsylvania Avenue in Washington, D.C.
The result was extremely gratifying, and well
worth the $4.50, Herewith some excerpts.

.,

Be-Book

for

Tricky Dick

ot

...-....-,.,
Dy . K
2
»

1344563005

CHILprg y sty

:ﬁ?gb‘ss; AHE (3) . Tricky p; . 1
BIRT&D:;%fIP: 1500 Penngylgi:f: Ave

Washj

ADD 1ng n

ITIONaL Vanps (g, guly u 20059
¢ Spiro

Mit
bo chel
Cﬂg:g }I:::E: g:sco 1 x “'{ ' 7‘.
E: e
B - Ck S,
Sk, s
== L
ADDREss.P S Namg, The Foyy

d
T Nelsop 9 Fathers

BOOK SHIPPED TO GROWN-UP

onrce upon & rioo, in & place called
P a 10T

W here ved tle bo
ashington, there it a lit Y

named Tricky pick Nixob.

i jttle boy-
jcky Dick vasa't just anm ordinary 1i
Now, Trick

i and girls
had adveptures that other little boys
He a

just dreanm of.

1 s the story ©tf one O 8 ventures.
i 4 f his ail
This Y

. . £
story of the day that Tricky pick ne

As the giraffe canme closer and closer,

Tricky Dick started to wonder how in the

world he was going to look him in thke eye.

ere no junjles in
pricky Dick kne¥ there wWeie 3
penpsylvania Ave.

washington. Especially oD

gt Tricky ck wasn't even ttle worried.
a little bi
But Tricky L1 asn’'t t t 4

b i OY »
First, because he was a very brave 1ittle b
’ Y

n secon beCausk he knew trat his fri end the
and a, becCa : 3 .
’

ver e hi v ad.
girafze ¥ouald never take him an place b
.

Tri ics
1CKy Dick Niron wag home

Back ip iiashington.

Bacyk
CK on Pennsylvania Ave

- . iis friends, that
t have believey :¢ they p
if adn't Seen

DlCK ridine
iag on the

off i

Glrafferg back

Tricky bick ulg
woulg long he A herc to th

had seey Lism that day e

There would be many other exciting adventures

for Tricky Dick and his friends.

And maybe, just maybe, if you're a very good

boy, someday we'll tell you about those, too.

PERSONALIZED ME-BOOKS™ NOW AVAILABLE:

Jungle Holiday
The child of your chorce and
the giraffe visit the animals in
an amusement park Personai-
1zed throughout

Friendly Giraffe
Your child and the child's friends
and pets take a jungle trip with

a friendly giraffe. Personalized

1n over 70 places

My
Birthday Land
Adventure

People in the land of candy and
cake tell all about your childs
exact birthday. from birthstone to
famous birthdays

My~
Special Christmas

As Santa's helper, your child
visits the Santas of the different
countries and learns the true
meaning of Chnistmas

For additional Me-Books™ written around a chitld of your chaice. complete an
order form at your favorite bookstore or write Me-Books Publishing Co . Dept
MB2, 11633 Victory Blvd., North Hollywood. Calit 21608 Enciose $3 95 plus
50¢ for postage and handling. (Calif. residents add 20¢ for sales tax) Be sure
to state which Me-Book™ you desire and include the foliowing miormation

PERSONALIZED STORY DATA
It certain 1ntormation below 1s not available or not appiicable LEAVE BLANK. This ¢ harmeng slory will be wiitten witkout it
PRINT CLEARLY, one characier per space and one space between words (Example &£ 2 .. W O & £ S}

It not enough space. abbreviate
Child's frst mame or " pickname
Chiid's address _ . - - ot

Cily . e e m e . .SWle L. L. _Ipcode
Chad's buth date

e e o _lastmame ..

— Below. st up 1o 3 tuends, brolhers or sisters
Month Day Yea

_itBey .- - - F—
€ 6l Gt Gl

Dogs name . _ o Catsmame _ . _ __ . _

Grown up's name to appear an personahzed book plate

("Aunt Jane, Grandina, Mom & Dad” et) .. _

Grown up's name (Person buying book) LUMr (TMrs T'Miss Fishinial _ Lastname _ _

Grown up's address —. P

Oy . _ _ _ S G 117 2ip rode

§ bought my last Me Book ™ at

Name of Retader

67

About those feany aumbens
on your checks.

You will note that all bank checks now
have funny-looking numbers along their bottoms.
They go like this:

01234G5E745Y oo

The numbers are odd but recognizable.
The last four thingies are punctuation marks,
which presumably can mean anything the pro-
grammer wants them to. (In other words,
frankly, 1 don't know their names or standard
functions.)

The name of these numbers is M'ﬂﬂ,

which stands for Magnetic Ink Character Recor-
ding. They are printed in magnetic ink-- not
magnetic so's you could record on it, like mag-
netic tape, but chock ‘full of iron and vitamins
so that as ifs blobs whiz past a special read
head, they cause a specific sequence of pulses
in the parallel circuits of the read head that can
be decoded as the specific number or mark.

The MICR system was designed in the
late fifties, with the technology convenient at
that time, and would certainly not be designed
that way now. Nevertheless, these weird-looking
symbols have inspired various

¢

RDICULGUS TYPE-FACES,

which apparently look to the public like the

latest hotcha whizbang zippity up-to-date futur-
istic stuff, even though to the knowledgeable
person they bring back the late fifties. (In

fact there are no letters in the MICR character-
set.) -

What, then (you may ask) would symbols
designed for computers look like if they had
been designed more recently?

We were just getting to that. In fact,
there are two such alphabets, called OCR (for
Optical Character Recognition). They have
been standardized so everybody can design
equipment and/or programs to work with them.
They are called the A and B optical fonts, or,
for completeness, OCR(A) and OCR(B).

They are very disappointing.

OCR(A) is a little sexier. At least it
looks like something. (Evidently it's slightly
easier to deal with and design for.) But the
other one, OCR(B), just looks like the alphabet
next door. Here they are.

ABCDEFGHIJKLM
NOPQRSTUVUXYZ
0L2345k789
saltizH/S5XTE

' ={}Yi70%A
ONAGOARLEY

ocm)

1234567890

ABCDEFGHIJKLM
NOPQRSTUVWXYZ
abcdefghijklm
nopaQrstuvwxyz
kt==/_p3;""
21 ()<>LI%HERA
LS| \D —— ¥

OCR (B)

68

‘ ~
One of the world's most exclusive clubs
{s also one of its most dismal. It is The Club
of Rome, founded by Italian businessman Aurelio

Peccei, having (as of 1972) some seventy mem-
bers from twenty-flve countries.

* Their concern they call The Predicament
of Mankind, or the "problematique.” It is the
problem of growth, pollution, population, and
What's Happening in general.

On funds from Volkswagen, they have
sponsored studies which thinking men cen only
regard as the most dismal in portent of anything
we've seen in years. Or ever.

Basically the prediction is that mankind
has perhaps forty or fifty years left.

Not because of war, or bombs, or dirty
movies, or Divine retribution, but for simple
economic reasons. However, the studies are
often called "computer studies,” because compu-
ters are the viewing mechanism by which we
have come to see these coming events.

MALTHUS AGAIN

In the nineteenth century, a pessimistic
economist named Thomas Malthus predicted that
there would always be starving people, because
people increased geometrically-- expanding at
compound interest, with a fixed rate of increase
creating an ever-steeper growth-- while agricul-
tural production, which must feed us all, expands
arithmetically, not as a rate but a few acres or
improvements at a time.

This meant, Malthus thought, that there
would always be the starving poor. For various
reasons this did not happen in Europe. But the
regrettable soundness of the general principle
persists: when rates of food production can't
nearly keep up with rates of population growth,
people are going to starve.

This is basically the prediction.
DYNAMIC MODELLING

Basically what has happened is this. One
Jay Forrester, of MIT, has for some years been
studying "dynamic models” of things, a new
breed of simulation which couldn't have been
done without computers. And now dynamic
models of the world's entire economic system
can be created and tried out.

Basically dynamic models are mathematical
complexes where things change at rates that
change themselves over time. For instance, the
more you eat, the fatter you get, and the fatter
you get, the hungrier you are going to be. Now,
just because this is simple to say in words, and
sounds as though mathematicians would have had
solved the whole class of problems centuries ago,
that's not how it is. The intricacy of such
models, even for just a few variables, made it
impossible to foresee what happens in such com-
plexes exact by techniques of computer enactment.
Forrester, who has studied such systems since
the fifties, has become alert to their problems
and surprises. The culmination of his work has
been a model of the entire world's economic
growth, agriculture, population, industrialization
and pollution; this is described ir his book
W_oxi(l Dynamics (Wright-Allen, 1971).

The insidious portents of Forres-
ter's work did not go unnoticed. The
dangers of population increasing at com-
pound interest on a planet of unchanging
size, and further derivatives of these
changes, suggested that things might be
getting worse than anybody thought., An
alert Italian businessman brought togeth-
er a group of scholars from all over the
world to study these problems, and called
the group The Club of Rome. Their first
work is out now, and it is very scary
and all too real. The book is called The
Limits to Growth. -

Basically what they hgve done is a
very elaborate computer simulation,
modelling the entire economy of the planet
in the years to come as a structure of
rates. They have taken into account
population, food-growing capacity, indus-
trial growth, pollution, and a lot of
other things., The model is precise and
elaborate,

Unfortunately the findings are pre-
cise and simple.

They tried all kinds of alternative
futures using the model-- what would
happen if the birth rates were different?
What if there were no pollution? What
if resources were infinite?

The results of the simulations are
always the same.

According to all the simulations,
the human race will be wiped out-- mostly
or completely-- by the year 2100,

Let's go briefly through the model.
Note that it can't be exact, and we can't
know what years things are going to hap-
pen. The curves themselves-- the shape
of things to come-- tell the story all
too clearly. (For those who would like
a little more drama with their numbers,
finding these matters too abstract, I
strongly recommend the very beautiful
Indian film "Distant Thunder," a sort of
"“Mr. Smith Starves to Death." Or just
stick around awhile.)

HUH?

The model assumes that birth rates
stay relatively constant in particular
parts of the world, and that new land
and agricultural techniques increase food
production in relatively well-understood
ways.

Of course, population continues to
go up, on the familiar but deadly curve.

Civilization, and the bulk of mankind,
have about forty years to live, according to
certain studies (see p.68). The studies
are depressingly good, although unfinished.

There are four possible things to do.
1. Ignore it.
2. Deny it.

3. Seek individual salvation somehow,
Hide in a remote corner. Lay in stores.

4. The glorious flameout. Eat, drink
and be merry, for tomorrow we die. Or
apocalyptic occultism, or whatever,

5. Work starting now. I[n whatever
directions might, just might, point or con-
tribute to a way out.

eopk,
~ Ihwtu_

e ——

Now for the good news. Food pro-
duction also tends to increase:

ford

ol
i

Frne
—>

Now for the bad news. The running
ratio of food to people, Food per Capita,
takes a1 sudden nose-dive. And then so
does ponulation.

!

FoOp PER PRRsON

' g

It is not any individual prediction that is
frightening, since the numbers piugged into the
separate runs are merely hypotheses, to show
the shape of the consequences. It is the overall
set of runs that is so ghastly, because they al-
ways come out the same.

PAY CLOSE ATTENTION

Now, it is important to clarify what is
happening here and what is not. What is not
happening: an oracular pronouncement by "the
computer," showing some transcendental predic-
tion by & superhuman intelligence. What is hap-
pening: people are trying out separate possible
assumptions to see wheat their consequences are,
cnacted by the computer according to the economic
rules they set up. Result: always the same.
Any set of rules, played out in the unstable
exploding-population world beyond the seventies,
appears to have similarly dire results.

WHAT HOPE 1S THERE?

The original model is only an approxima-
tion, and the basic results, as published in The
Limits to Growth (see box) reflect those approx-
imations. One of the things that can be done is
to fill in and expand the model more, to see
whether any hopes can be found in the details
and fine cracks which don't appear from the
gross results. And, of course, to study and
re-study the basic findirgs. (For instance, a
small error was recently fourd: a decimal point
was misplaced in the "pollution" calculation,
leading tc an overstatement of the pollution in
some of the runs. (But pollution, remember, is
only part of the problem.)

So there you are. This is & study of the
greatést importance. We may,. just may, be get-
ting wind of things in time to change the outcome.
(If only we knew how. But again, this study
is where serious discussion must begin.)

F —

IBM IS BULLISH ON THE FUTURE

Lewis M. Branscomb, who has the awe-
some title of Chief Scientist of IBM, has been
giving numerous talks recently that seem to be
directed against pessimism resulting from the
Club of Rome studies.

"'On the shoulders of the information
processing community rests the responsi-
bility for convincing the public that we
have the tools, if it has the will, to ad-
dress the complex systems management
problems of the future,' Branscomb said.

"'More than any other profession
our community can restore the publie's
confidence that from the limited resources
of the world can be fashioned a life of
well-managed abundance for all,’ he
concluded .”

(Keynote speech, ACM 73, quoted
in Computerworld, 5 Sep 73, p. 4.)

ENNGANE .

Now begins the winter of the world.
We are poisoning everything.

With so little time left, we are of course
expanding and accelerating every form of pollution
and destruction.

We are killing the last of our beautiful
brothers, the whales, just to provide marginal
amortization of the whale-ships that are going
to be scrapped anyway.

Item: supposedly the Sahara Desert was
men-made. It is growing fast.

Set down upon this beautiful planet, a
garden spot of the universe, we are turning it
into a poisoned pigsty.

You and 1 may starve to death, dear reader.
In some year fairly soon now, around the turn of
the century, there will no longer be nearly e-
nough food fer the teeming billiors.

That, anyway, is what the predictions say.
The predictions are compeiling, not because a
computer made them -- anybody can make a com-
puter prediet anything-- but because the prem-
ises from which the predictions grow were
very well thought out.

It is now up to us to make the predictions
come out wrong.

Not by killing the bearer of bad tidings,
or by pretending they were not clearly stated--
but by seeing what possible alternatives remain
in the few moments of real choice we may yet
have-- scant years at best.

To haggle now about ideology is like ar-
guing about who is driving while we are headed
toward a brick wall with the gas pedal jammed
to the floor.

The pubilic thinks, "seience will save us,”
a view at which many scientists snicker bitterly.
Perhaps we will be shrunk to an inch's height,
or fed on rocks, or given gills and super-kidneys
to live in the ever-mcre-poisoned sea. Or per-
haps we will do what science says others have
done: die out.

This science-will-save-us ostrich-position
is nicely exemplified by Albert Rosenfeld, Science
Editor of Saturday Review/World.

Since "science" has given us the Boeing
747 and the neutrino, neither of which could
once, he thinks, have been imagined possible,
obviously (to him) science can do anything else
we think is impossible! He fully imagines that
science will come up with something to take
care of geometrically ircreasing numbers of
people. In perpetuity?

"Take a lesson from the neutrino," he
says. "We can solve our problems." ("Look
to the Neutrino, Thou Docmsayer.” Saturday
Review/World, Feb 23 1974, 47.)

OTHER FUN

The growing diffusion of weapons and
grudges, and the great vuinerability of almost
everything, assure that terrorism and political
extortion will will increase dramatically for
the foreseeable future. On the other hand,
whole economic blocs and industries have
lately mastcred and demonstrated by example
how to hold the country at bay in order to
get their wishes; as everybody can see what's
huppcning, and learn from it, the number of
wrenching unpleasantr.esses created by terrorists
and industries and interest bloes will irercasc.

All these were essentially foreseen by
Themas C. Schelling in his masterly 1960 work,
The Strategy of Conflict. Schelling formalizes
a theory of intimidation as part of his study of
communicating adversaries. (His is a structural
rather than a psychological study, exen?ining -
the properties of situations whether or not they
are psychologically perceived. Regrettably,
perception of situations is improving all the
time)

—

Cousteau says the ocesans are dying
a lot faster than he anticipated
-- and gives mankind fifty years
after life ends there.

—_—

But even if everything else were all right,
the Breeder Reactors are sure to get us. 1 refer
to those wonder machines that the electric com-
panies are calling Clean Energy for the Future.
What is not explained with such slogans is that
breeder reactcrs not only create energy, they
create atomic waste, breeding new fissionable
material-- including plutonium. Plutonium is
well named for the gcd of hell. Chemically a
poison and radiosctively a horror, it does not
go away; wherever we put it, it will get back
to us.

The mere radiation from the atomic crap
is hardly the problem. The radioactive poisons
are getting into the oceans. They are getting
into the clean waters of the land. (A December
1973 news report, for instance, revealed that
a 1968 leak of radiosective chemicals was into
the water supply of Bloomfield, Colorado.) Now,
atomic enthusiasts call it a Disposal Problem,
like the question of where to bury the garbage.
But it's a very different problem. Wherever we
put it, it will come back. The sea? No, that'll
be poisoned after the containers go. Deep wells?
The mountains? But there is no place that can-
not be guaranteed against earthquake and re-
cyeling. It will come back. Though dozens of
generations might survive it, it will be waiting.

But the breeder reactors multiply this
output. Perhaps we could survive the the waste
for a few hundred years, till it comes back out.
But the other part of it is the fissionable material
which can be made into backyard bombs.

That's the kicker. With more and more
fissionable crud being disgorged, its availability
for terrorists who want to build their own in-
creases. Ralph Lapp pointed out last year that
the stuff was shipped in unguarded trucks, and
one or two good hijackings would enable any
bright kid to build his own dirty A-bomb. By
the year 2000 it is not inconceivable that bootleg
atomic weapons will be as widespread as hand-
guns in Detroit-- and as much used.

But now, with the breeder reactors-- ir.
lots of countries-- pouring the stuff out, the era
of atomic plenty is here. The smaller countries
who want them are getting their atomic weapons
-~ though holding back assembly of the parts,
for various reasons. It is generally believed
among bomb-watchers, for instance, that India
and Israel have theirs anytime they want.

Add this to the great avalanche of missiles,
tall and horny in their silos, ready to go on two,
later three or four, sides. (The U.S. official
arsenal now stands at the explosive equivalent
of 5 billion tons of TNT, a ton of TNT for every
human being. And that's just the explosive part,
not the fallout; a fraction of these bombs could
destroy all life on earth by its secthing residue.)
And now, because of the SALT talks, we may
expeet a new and drastic incresse of this Readiness
Posture. Hoo boy. What is there to sov.

So there it is, folks, merry times ahead.
Humanity may end with a bang (thermonuclear
exchanges, or just desultory firings urtil we're
all poisoned or sterile), or a whimper (universal
stervation), or, I would anticipate, some spastic
combinstion of the two, and all within the (pos-
sible) lifetime of the average reader. This is,
at any rate, what I think most likely.

Except of course we won't see it happen
that way. We'll watch the starvations on TV
(as we did Biafra, Bangladesh. now West Africa,
what next... India?), and tsk about the poor
foreigners who can't take care of themseives.
And as the problems increase and move toward
our heartland, it'll be blamed on environmentalists
and on the news media, till bang.

Or maybe not. Just maybe.

But we've all got to gel access to the Club
of Rome models, and look for holes or strategies.
if computer modclling systems doing this kind of
work are mode wicely enough available, perhaps
sorie precocious grade-schooler or owlish hobbyist
will find some way out that the others haven't
hit on...

We've got to think hard about everythring.

BIBLIOGRAPHY

Frederick Pohl and C.M. Kornbluth, The Space
Merchants. Ballantine, paper.

Thomss C. Schelling, The Strategy of Conflict.
Paper.

The Great American Bomb Machine (citation net
handy). Paperback.

A book called Cold Dawn (citstion not handy:
originally published in the New Yorker)
presents 4 most discouraging view of
this country’s actions ir the SALT talks.

One Access Catslog. not to be named here. gives
a recipe for an atoric bomb. Very funny,
ha ha. "T'he U-235 we are using, (although
Plutonium will work just as well) is a
radioactive substance and deserves some
car¢ in handling. It is NOT radioactive
enough to kill with limited exposure, but
don't sleep with it or anything.” And so on.
Thanks a lot, fellas.

Ralph Lagp had a piece in the New York Times
Magazine last year, pointing out that
plutonium is shipped in unguarded trucks
anc it's only a matter of time before
purks get their honds on it. ..

A picce in a recent Esquire, "Did There Ever
Come a Point in Time When There Were
Forty-Three Different Theories about
Watergate? Yes, to the Best of Qur
Recollection,™ is a very helpful general
source, especially for those who suspect a
connection between "Watergate”" and the
assassinations of the Kennedys. Malcolm
X, Martin Luther Kiné. etc. But for a
real chill see "Mae Brussell's Conspiracy
Newsletter” in the March (?) 1974
Realist, as well as "Who Is Organized
Crime and Why Are They Saying Such
Awful Things About it." same issue.

Glen A. Love and Rhoda M. Love, Leological
Crisis: Readings for Survival. Harcourt,
$4 (paper). A quick way to catch up on
some bad stuff. Four bucks well spent.

William Leiss, The Domination of Nature.
Braziller, $7.

For a dazzling, romantic and optimistic view of
the future, see Dimensions of Change by
Don Fabun (Glencoe Press, $5 in paper).

The Futurist magazine goes out to members of
the World Future Society, An Association
for The Study of Alternative Futures,
Post Office Box 30369, Bethesda Branch,
Washington, DC 20014. The magazine
used to be pretty sappy and optimistic,
but seems to be acquiring sophistication.

Ronald kotulak, "The Lifeboat Lthic."

Chicago Tribune Magazine, 28 apr 74,
19-22.,

Perhaps the Club of Rome study should be called--

THE HOLE EARTH CATAISG

"
I have o dream..."

P. My feeling frankly is this.

That you know I was just thinking
tonight as I was making up my notes
for this little talk, you know,
what the hell, it is a little melo-
dramatic, but it is totally true
that what happens in this office

in the next four years will proba-
bly determine whether there is a
chance, and it's never been done,
that you could have some sort of an
uneasy peace for the next 25 years.

E. Uh huh.

(Nixon to Ehrlichmann. Apr 73.)

Thank you, Mr. Pr

ReAd IV kN WEEP

Donnella H. Meadows, Dennis L. Meadows, Jér
d William W. Behrens III,

th: A Report for THE

t on the Predica-

"Things are going to get worse and worse
and never get any better again."

-- attributed to
Kurt Vonnegut, Jr.

(1%

FOLKS DON'T NEED THESE LI'L SHMOOS!!--
THEY ALREADY

SHMOO OF ALL-~ TH'

JEST LIKE THESE LT'L SHMOOS, IT'S
READY T'GIVE EV'RYBODY EV'RYTHING
THEY NEED!! EF ONLY FOLKS STOPPED
A-FIGHTIN', AN' A-GRABBIN'-- THEY'D
REE-LIZE THET THIS SHMOO-- TH' EART
GOT PLENTY O' EVERYTHING--

FO' EV'RYBODY!!"

-- Li'l Abner

Pocket Books, 1949, pp. 121-122.)

et p. DM

