
Lev Manovich

SOFTWARE STUDIES

[2008]

Software, or the Engine of Contemporary Societies

In the beginning of the 1990s, the most famous global brands were

the companies that were in the business of producing materials goods

or processing physical matter. Today, however, the lists of best

recognized global brands are topped with the names such as Google,

Yahoo, and Microsoft. (In fact, Google was number one in the world in

2007 in terms of brand recognition.) And, at least in the U.S., the

most widely read newspapers and magazines - New York Times, USA

Today, Business Week, etc. -daily feature news and stories about

YouTube, Myspace, Facebook, Apple, Google, and other IT companies.

What about other media? If you access CNN web site and navigate to

the business section, you will see a market data for just ten companies

and indexes displayed right on the home page.1 Although the list

changes daily, it is always likely to include some of the same IT

brands. Lets take January 21, 2008 as an example. On that day CNN

list consisted from the following companies and indexes: Google,

Apple, S&P 500 Index, Nasdaq Composite Index, Dow Jones Industrial

Average, Cisco Systems, General Electric, General Motors, Ford, Intel.2

1 http://money.cnn.com, accessed January 21, 2008.
2

This list is very telling. The companies that deal with physical goods

and energy appear in the second part of the list: General Electric,

General Motors, Ford. Next we have two IT companies which provide

hardware: Intel makes computer chips, while Cisco makes network

equipment. What about the two companies which are on top: Google

and Apple? The first appears to be in the business of information, while

the second is making consumer electronics: laptops, monitors, music

players, etc. But actually, they are both really making something else.

And apparently, this something else is so crucial to the workings of US

economy—and consequently, global world as well—that these

companies almost daily appear in business news. And the major

Internet companies which also daily appears in news - Yahoo,

Facebook, Amazon, Ebay – are in the same business.

This “something else” is software. Search engines, recommendation

systems, mapping applications, blog tools, auction tools, instant

messaging clients, and, of course, platforms which allow others to

write new software – Facebook, Windows, Unix, Android – are in the

center of the global economy, culture, social life, and, increasingly,

politics. And this “cultural software” – cultural in a sense that it is

directly used by hundreds of millions of people and that it carries

“atoms” of culture (media and information, as well as human

interactions around these media and information) – is only the visible

part of a much larger software universe.

Software controls the flight of a smart missile toward its target during

war, adjusting its course throughout the flight. Software runs the

warehouses and production lines of Amazon, Gap, Dell, and numerous

other companies allowing them to assemble and dispatch material

objects around the world, almost in no time. Software allows shops

and supermarkets to automatically restock their shelves, as well as

automatically determine which items should go on sale, for how much,

and when and where in the store. Software, of course, is what

organizes the Internet, routing email messages, delivering Web pages

from a server, switching network traffic, assigning IP addresses, and

rendering Web pages in a browser. The school and the hospital, the

military base and the scientific laboratory, the airport and the city—all

social, economic, and cultural systems of modern society—run on

software. Software is the invisible glue that ties it all together. While

various systems of modern society speak in different languages and

have different goals, they all share the syntaxes of software: control

statements “if/then” and “while/do”, operators and data types

including characters and floating point numbers, data structures such

as lists, and interface conventions encompassing menus and dialog

boxes.

If electricity and the combustion engine made industrial society

possible, software similarly enables gllobal information society. The

“knowledge workers”, the “symbol analysts”, the “creative industries”,

and the “service industries” - all these key economic players of

information society can’t exist without software. Data visualization

software used by a scientist, spreadsheet software used a financial

analyst, Web design software used by a designer working for a

transnational advertising energy, reservation software used by an

airline. Software is what also drives the process of globalization,

allowing companies to distribute management nodes, production

facilities, and storage and consumption outputs around the world.

Regardless of which new dimension of contemporary existence a

particular social theory of the last few decades has focused on—

information society, knowledge society, or network society—all these

new dimensions are enabled by software.

Paradoxically, while social scientists, philosophers, cultural critics, and

media and new media theorists have by now seem to cover all aspects

of IT revolution, creating a number of new disciplines such as cyber

culture, Internet studies, new media theory, and digital culture, the

underlying engine which drives most of these subjects—software—has

received little or not direct attention. Software is still invisible to most

academics, artists, and cultural professionals interested in IT and its

cultural and social effects. (One important exception is Open Source

movement and related issues around copyright and IP that has been

extensively discussed in many academic disciplines). But if we limit

critical discussions to the notions of “cyber”, “digital”, “Internet,”

“networks,” “new media”, or “social media,” we will never be able to

get to what is behind new representational and communication media

and to understand what it really is and what it does. If we don’t

address software itself, we are in danger of always dealing only with

its effects rather than the causes: the output that appears on a

computer screen rather than the programs and social cultures that

produce these outputs.

“Information society,” “knowledge society,” “network society,” “social

media” – regardless of which new feature of contemporary existence a

particular social theory has focused on, all these new features are

enabled by software. It is time we focus on software itself.

What is “software studies”?

What is software studies? Here are a few definitions. The first comes

from my own book The Language of New Media (completed in 1999;

published by MIT Press in 2001), where, as far as I know, the terms

“software studies” and “software theory” appeared for the first time. I

wrote: ”New media calls for a new stage in media theory whose

beginnings can be traced back to the revolutionary works of Robert

Innis and Marshall McLuhan of the 1950s. To understand the logic of

new media we need to turn to computer science. It is there that we

may expect to find the new terms, categories and operations that

characterize media that became programmable. From media studies,

we move to something which can be called software studies; from

media theory — to software theory.”

Reading this statement today, I feel some adjustments are in order. It

positions computer science as a kind of absolute truth, a given which

can explain to us how culture works in software society. But computer

science is itself part of culture. Therefore, I think that Software Studies

has to investigate both the role of software in forming contemporary

culture, and and cultural, social, and economic forces which are

shaping development of software itself.

The book which first comprehensively demonstrated the necesssity of

the second appoach was New Media Reader edited by Noah Wardrip-

Fruin and Nick Montfort (The MIT Press, 2003). The publication of this

groundbreaking anthology laid the framework for the historical study

of software as it relates to the history of culture. Although Reader did

not explicitly use the term “software studies,” it did propose a new

model for how to think about software. By systematically juxtaposing

important texts by pioneers of cultural computing and key artists

active in the same historical periods, the Reader demonstrated that

both belonged to the same larger epistemes. That is, often the same

idea was simultaneously articulated in thinking of both artists and

scientists who were inventing cultural computing. For instance, the

anthology opens with the story by Jorge Borges (1941) and the article

by Vannevar Bush (1945) which both contain the idea of a massive

branching structure as a better way to organize data and to represent

human experience.

In February 2006 Mathew Fuller who already published a pionnering

book on software as culture (Behind the Blip, essays on the culture of

software, 2003) organized the very first Software Studies Workshop at

Piet Zwart Institute in Rotterdam. Introducing the workshop, Fuler

wrote: “Software is often a blind spot in the theorisation and study of

computational and networked digital media. It is the very grounds and

‘stuff’ of media design. In a sense, all intellectual work is now

‘software study’, in that software provides its media and its context,

but there are very few places where the specific nature, the

materiality, of software is studied except as a matter of engineering.”3

I completely agree with Fuller that “all intellectual work is now

‘software study.” Yet it will take some time before the intellectuals will

realise it. At the moment of this writing (Spring 2008), software

studies is a new paradigm for intellectual inquiry which is now just

beginning to emerge. The very first book which has this term in its title

is being published by The MIT Press later this year (Software Studies:

A Lexicon, edited by Matthew Fuller.) At the same time, a number of

3 http://pzwart.wdka.hro.nl/mdr/Seminars2/softstudworkshop,
accessed January 21, 2008.

already published works by the leading media theorists of our times -

Katherine Hayles, Friedrich A. Kittler, Lawrence Lessig, Manual

Castells, Alex Galloway, and others - can be retroactively identified as

belonging to "software studies.4 Therefore, I strongly believe that this

paradigm has already existed for a number of years but it has not

been explicitly named so far. (In other words, the state of "software

studies" is similar to where "new media" was in the early 1990s.)

In his introduction to 2006 Rotterdam workshop Fuller writes that

“software can be seen as an object of study and an area of practice for

art and design theory and the humanities, for cultural studies and

science and technology studies and for an emerging reflexive strand of

computer science.” Given that a new academic discpline can be

defined either through a unique object of study, a new research

method, or a combination of the two, how shall we think of software

studies? Fuller’s statement implies that “software” is a new object of

study which should be put on the agenta of existing disciplines and

which can be studied using aleady exising methods – for instance,

Latour’s object-network theory, social semiotics, or media archeology.

I think there are good reasons for supporting this perspective. I think

of software as a layer that permeates all areas of contemporary

societies. Therefore, if we want to understand contemporary

techniques of control, communication, representation, simulation,

analysis, decision-making, memory, vision, writing, and interaction,

our analysis can't be complete until we consider this software layer.

Which means that all disciplines which deal with contemporary society

4 See Truscello, Michael. Behind the Blip: Essays on the Culture of
Software (review) Cultural Critique 63, Spring 2006, pp. 182-187.

and culture – architecture, design, art criticism, sociology, political

science, humanities, science and technology studies, and so on – need

to account for the role of software and its effects in whatever subjects

they investigate.

At the same time, the existing work in software studies already

demonstates that if we are to focus on software itself, we need new

methodologies. That is, it helps to practice what one writes about. It is

not accidental that the intellectuals who have most systematicaly

written about software’s roles in society and culture so far all either

have programmed themselves or have been systematically involved in

cultural projects which centrally involve writing of new software:

Katherine Hales, Mathew Fuller, Alexander Galloway, Ian Bogust, Geet

Lovink, Paul D. Miller, Peter Lunenfeld, Katie Salen, Eric Zimmerman,

Matthew Kirschenbaum, William J. Mitchell, Bruce Sterling, etc. In

contrast, the scholars without this experience such as Jay Bolter,

Siegfried Zielinski, Manual Castells, and Bruno Latour as have not

included considerations of software in their overwise highly influential

accounts of modern media and technology.

In the present decade, the number of students in media art, design,

architecture, and humanities who use programming or scripting in

their work has grown substantially – at least in comparison to 1999

when I first mentioned “software studies” in The Language of New

Media. Outside of culture and academic industries, many more people

today are writing software as well. To a significant extent, this is the

result of new programming and scripting languages such as

Processing, PHP, and ActionScript. Another important factor is the

publication of their APIs by all major Web 2.0 companies in the middle

of 2000s. (API, or Application Programming Interface, is a code which

allows other computer programs to access services offered by an

application. For instance, people can use Google Maps API to embed

full Google Maps on their own web sites.) These programming and

scripting languages and APIs did not necessary made programming

iself any easier. Rather, they made it much more efficient. For

instance, when a young designer can create an interesting design with

only couple of dozens of code written in Processing versus writing a

really long Java program, s/he is much more likely to take up

programming. Similarly, if only a few lines in Javascript allows you to

intergrate all the functionality offered by Google Maps into your site,

this is a great motivation for beginning to work with Javascript.

In his 2006 article which reviewed other examples of new technologies

which allow people with very little or no programming experience to

create new custom software (such as Ning and Coghead), Martin

LaMonica wrote about a future possibility of “a long tail for apps.”5 A

few years later, the apps exploded,

Clearly, today the consumer technologies for capturing and editing

media are much easier to use than even most high level programming

and scipting languages. But it does not necessary have to stay this

way. Think, for instance, of what it took to set up a photo studio and

take photographs in 1850s versus simply pressing a single button on a

digital camera or a mobile phone in 2000s. Clearly, we are very far

from such simplicity in programming. But I don’t see any logical

reasons why programming can’t one day become as easy.

5 Martin LaMonica, “The do-it-yourself Web emerges,” CNET News, July
31, 2006 < http://www.news.com/The-do-it-yourself-Web-emerges/2100-
1032_3-6099965.html>, accessed March 23, 2008.

For now, the number of people who can script and program keeps increasing.

Although we are far from a true “long tail” for software, software development is

gradualy getting more democratised. It is, therefore, the right moment, to start

thinking theoretically about how software is shaping our culture, and how it is shaped

by culture in its turn. The time for “software studies” has arrived.

Why the History of Cultural Software Does not Exist

German media and literary theorist Friedrich Kittler wrote that the

students today should know at least two software languages; only

“then they'll be able to say something about what 'culture' is at the

moment.”6 Kittler himself programms in an assembler language which

probably determined his distrust of Graphical User Interfaces and

modern software which uses these interfaces. In a classical modernist

move, Kittler argued that we need to focus on the “essence” of

computer - which for Kittler meant mathematical and logical

foundations of modern computer and its early history characterised by

tools such as assembler languages.

Although Software Studies is concerned with all software, we have a

particular interest in what I call cultural software. While this term has

6 Friedrich Kittler, 'Technologies of Writing/Rewriting Technology'
<http://www.emory.edu/ALTJNL/Articles/kittler/kit1.htm>, p. 12;
quoted in Michael Truscello, “The Birth of Software Studies: Lev
Manovich and Digital Materialism,” Film-Philosophy, Vol. 7 No. 55,
December 2003 http://www.film-philosophy.com/vol7-
2003/n55truscello.html, acccessed January 21, 2008.

previously used metaphorically (for instance, see J.M. Balkin, Cultural

Software: A Theory of Ideology, 2003), in this book I am using this

term literally to refer to programs such as Word, Powerpoint,

Photoshop, Illustrator, After Effects, Firefox, Internet Explorer, and so

on. Cultural software, in other words, is a particular subset of

application software aimed at creating, distributing, and accessing (or

publishing, sharing, and remixing) cultural objects such as images,

movies, moving image sequences, 3D designs, texts, maps, as well as

various combinations of these and other media. (While originally such

application software was designed to run on the desktop, today some

of the media creation and editing tools are also available as webware,

i.e., applications which are accessed via Web such as Google Docs.)

Cultural software also includes tools for social communication and

sharing of media, information, and knowledge such as web browsers,

email clients, instant messaging clients, wikis, social bookmarking,

social citation, virtual worlds, and so on.7 I also would also include

under cultural software tools for personal information management

such as address books, project management applocations, and

desktop search engines. (These categories themselves are not

absolute but are shifting over time: for instance, during 2000s the

boundary between “personal information” and “public information” has

increasingly dissappeared as people started to routinely place their

their media on social networking sites; similarly, Google’s search

engine shows you the results both on your local machine and the

web.) Last but not least, the media interfaces themselves – icons,

folders, sounds and animations accompaning user interactions - are

7 See http://en.wikipedia.org/wiki/Social_software, accessed January
21, 2008.

also cultural software, since these interface mediate people’s

interactions with media and other people.

We live in a software culture - that is, a culture where the production,

distribution, and reception of most content is mediated by software.

And yet, most creative professionals do not know anything about the

intellectual history of software they use daily - be it Photoshop, GIMP,

Final Cut, After Effects, Blender, Flash, Maya, or MAX.

Where does contemporary cultural software came from? How did its

metaphors and techniques were arrived yet? And why was it developed

in the first place? We don’t really know. Despite the common

statements that digital revolution is at least as important as the

invention of a printing press, we are largely ignorant of how the key

part of this revolution - i.e., cultural software - was invented. Then you

think about this, it is unbelieavable. Everybody in the business of

culture knows about Guttenberg (printing press), Brunelleschi

(perspective), The Lumiere Brothers, Griffith and Eisenstein (cinema),

Le Corbusier (modern architecture), Isadora Duncan (modern dance),

and Saul Bass (motion graphics). (Well, if you happen not to know one

of these names, I am sure that you have other cultural friends who

do). And yet, a few people heard about J.C. Liicklider, Ivan Sutherland,

Ted Nelson, Douglas Engelbart, Alan Kay, Nicholas Negroponte and

their colloborators who, between approximately 1960 and 1978, have

gradually turned computer into a cultural machine it is today.

Remarkably, history of cultural software does not yet exist. What we

have are a a few laregly biographical books about some of the key

individual figures and research labs such as Xerox PARC or Media Lab -

but no comprehensive synthesis which would trace the geneological

tree of cultural software.8 And we also don’t have any detailed studies

which would relate the history of cultural software to history of media,

media theory, or history of visual culture.

Modern art institutions - museums such as MOMA and Tate, art book

publishers such as Phaidon and Rizzoli, etc. – promote the history of

modern art. Hollywood is similarly proud of its own history – the

stars, the directors, the cinematographers, and the classical films. So

how can we understand the neglect of the history of cultural

computing by our cultural institutions and computer industry itself?

Why, for instance, Silicon Valley does not a museum for cultural

software? (The Computer History museum in Mountain View, California

has an extensive permanent exhibition which is focused on hardware,

operating systems and programming languages – but not on the

history of cultural software9).

I believe that the major reason has to do with economics. Originally

misunderstood and ridiculed, modern art has eventualy became a

legitimate investment category – in fact, by middle of 2000s, the

paintings of a number of twentiteh century artists were selling for

more than the most famous classical artists. Similarly, Hollywood

continues to rip profits from old movies as these continue to be

8 The two best books on the pioneeres of cultural computing, in my
view, are Howard Rheingold, Tools for Thought: The History and
Future of Mind-Expanding Technology (The MIT Press; 2 Rev Sub
edition, 2000), and M. Mitchell Waldrop, The Dream Machine: J.C.R.
Licklider and the Revolution That Made Computing Personal (Viking
Adult, 2001).
9 For the museum presentation on the web, see
http://www.computerhistory.org/about/, accessed March 24, 2008.

reissued in new formats. What about IT industry? It does not derive

any profits from the old software – and therefore, it does nothing to

promote its history. Of course, contemporary versions of Microsoft

Word, Adobe Photoshop, Autodesk Autocad, and many other popular

cultural applications build up on the first versions which often date

from the 1980s, and the companies continue to benefit from the

patents they filed for new technlogies used in these original versions

– but, in contast to the video games from the 1980s, these early

software versions are not treated as a separate products which can be

re-issued today. (In principle, I can imagine software industry creating

a whole new market for old software versions or applications which at

some point were quite important but no longer exist today – for

instance, Aldus Pagemaker. In fact, given that consumer culture

systematically exploits nostalgia of adults for the cultural experiences

of their teenage years and youth by making these experiences into

new products, it is actually surpising that early software versions were

not turned into a market yet. If I used daily MacWrite and MacPaint in

the middle of the 1980s, or Photoshop 1.0 and 2.0 in 1990-1993, I

think these experiences were as much part of my “cultural genelogy”

as the movies and art I saw at the same time. Although I am not

necessary advocating creating yet another category of commercial

products, if early software was widely available in simulation, it would

catalyze cultural interest in software similar to the way in which wide

availability of early computer games fuels the field of video game

studies.)

Since most theorists so far have not considered cultural software as a

subject of its own, distinct from “new media,” media art,” “internet,”

“cyberspace,” “cyberculture” and “code,” we lack not only a conceptual

history of media editing software but also systematic investigations of

its roles in cultural production. For instance, how did the use of the

popular animation and compositing application After Effects has

reshaped the language of moving images? How did the adoption of

Alias, Maya and other 3D packages by arhitectural students and young

architects in the 1990s has similarly influenced the langauge of

architecture? What about the co-evolution of Web design tools and the

aesthetics of web sites – from the bare-bones HTML in 1994 to visually

rich Flash-driven sites five years later? You will find frequent mentions

and short discussions of these and similar questions in articles and

conference discussions, but as far as I know, there have been no

book-length study about any of these subjects. Often, books on

architecture, motion graphics, graphic design and other design fields

will briefly discuss the importance of software tools in facilitating new

possibilities and opportunities, but these discussions usually are not

further developed.

