
 Manovich: Cultural Software. 2011.

Lev Manovich

Cultural Software

From new introduction to Software Takes Command manuscript.

July 2011 version.

Software, or the Engine of Contemporary Societies

Search engines, recommendation systems, mapping applications, blog tools,

auction tools, instant messaging clients, and, of course, platforms which

allow others to write new software – iOS, Android, Facebook, Windows,

Lunix, – are in the center of the global economy, culture, social life, and,

increasingly, politics. And this “cultural software” – cultural in a sense that it

is directly used by hundreds of millions of people and that it carries “atoms”

of culture (media and information, as well as human interactions around

these media and information) – is only the visible part of a much larger

software universe.

Software controls the flight of a smart missile toward its target during war,

adjusting its course throughout the flight.1 Software runs the warehouses

and production lines of Amazon, Gap, Dell, and numerous other companies

allowing them to assemble and dispatch material objects around the world,

almost in no time. Software allows shops and supermarkets to automatically

1 This and next paragraphs were written for the (unrealized) proposal for
Software Society book put together by me and Benjamin Bratton for The MIT
Press in 2003.

 Manovich: Cultural Software. 2011.

restock their shelves, as well as automatically determine which items should

go on sale, for how much, and when and where in the store. Software, of

course, is what organizes the Internet, routing email messages, delivering

Web pages from a server, switching network traffic, assigning IP addresses,

and rendering Web pages in a browser. The school and the hospital, the

military base and the scientific laboratory, the airport and the city—all social,

economic, and cultural systems of modern society—run on software.

Software is the invisible glue that ties it all together. While various systems

of modern society speak in different languages and have different goals,

they all share the syntaxes of software: control statements “if/then” and

“while/do”, operators and data types including characters and floating point

numbers, data structures such as lists, and interface conventions

encompassing menus and dialog boxes.

Paradoxically, while social scientists, philosophers, cultural critics, and media

and new media theorists have by now seem to cover all aspects of IT

revolution, creating a number of new disciplines such as cyber culture,

Internet studies, new media theory, and digital culture, the underlying

engine which drives most of these subjects—software—has received

relatively little direct attention. Even today when people are constantly

interacting with and updating dozens of apps on their mobile phones and

other computer devices, “software” as a distinct theoretical category is still

invisible to most academics, artists, and cultural professionals interested in

IT and its cultural and social effects.

There are some important exceptions. One is Open Source movement and

related issues around copyright and IP that has been extensively discussed

in many academic disciplines. In the last few years, we also see a rapidly

growing number of trade books about Google, Facebook, Amazon, and other

 Manovich: Cultural Software. 2011.

web giants. Some of these books offering insigntful discussions of the

software and its underlying concepts as developed by these companies and

the social, political, cognitive, and epistomological effects of this software

(such as Google web search engine).2 In this respect, journalists are way

ahead of academics who are still need to catch up.

If we limit critical discussions of digital culture to the notions of “open

access”, “cyber”, “digital”, “Internet,” “networks,” “new media”, or “social

media,” we will never be able to get to what is behind new representational

and communication media and to understand what it really is and what it

does. If we don’t address software itself, we are in danger of always dealing

only with its effects rather than the causes: the output that appears on a

computer screen rather than the programs and social cultures that produce

these outputs.

“Information society,” “knowledge society,” “network society,” “social media”

– regardless of which new feature of contemporary existence a particular

social theory has focused on, all these new features are enabled by software.

It is time we focus on software itself.

What is “Software Studies”?

What is software studies? Here are a few definitions. The first comes from

my own book The Language of New Media (completed in 1999; published by

The MIT Press in 2001), where, as far as I know, the terms “software

studies” and “software theory” appeared for the first time. I wrote:

2 For an exellent example, John Battelle. The Search: How Google and Its
Rivals Rewrote the Rules of Business and Transformed Our Culture. Portfolio
Trade, 2006, accessed January 21, 2008.

 Manovich: Cultural Software. 2011.

”New media calls for a new stage in media theory whose beginnings can be

traced back to the revolutionary works of Robert Innis and Marshall McLuhan

of the 1950s. To understand the logic of new media we need to turn to

computer science. It is there that we may expect to find the new terms,

categories and operations that characterize media that became

programmable. From media studies, we move to something which can be

called software studies; from media theory — to software theory.”

Reading this statement today, I feel some adjustments are in order. It

positions computer science as a kind of absolute truth, a given which can

explain to us how culture works in software society. But computer science is

itself part of culture. Therefore, I think that Software Studies has to

investigate both the role of software in forming contemporary culture, and

and cultural, social, and economic forces which are shaping development of

software itself.

The book which first comprehensively demonstrated the necesssity of the

second appoach was New Media Reader edited by Noah Wardrip-Fruin and

Nick Montfort (The MIT Press, 2003). The publication of this groundbreaking

anthology laid the framework for the historical study of software as it relates

to the history of culture. Although Reader did not explicitly use the term

“software studies,” it did propose a new model for how to think about

software. By systematically juxtaposing important texts by pioneers of

cultural computing and key artists active in the same historical periods, New

Media Reader demonstrated that both belonged to the same larger

epistemes. That is, often the same idea was simultaneously articulated in

thinking of both artists and scientists who were inventing cultural computing.

For instance, the anthology opens with the story by Jorge Borges (1941) and

 Manovich: Cultural Software. 2011.

the article by Vannevar Bush (1945) which both contain the idea of a

massive branching structure as a better way to organize data and to

represent human experience.

In February 2006 Mathew Fuller who already published a pionnering book on

software as culture (Behind the Blip, essays on the culture of software,

2003) organized the very first Software Studies Workshop at Piet Zwart

Institute in Rotterdam. Introducing the workshop, Fuler wrote: “Software is

often a blind spot in the theorisation and study of computational and

networked digital media. It is the very grounds and ‘stuff’ of media design.

In a sense, all intellectual work is now ‘software study’, in that software

provides its media and its context, but there are very few places where the

specific nature, the materiality, of software is studied except as a matter of

engineering.”3

I completely agree with Fuller that “all intellectual work is now ‘software

study.” Yet it will take some time before the intellectuals will realise it. To

help bring this change, in 2008, Mathew Fuller, Noah Wardrip-Fruin and me

established Software Studies book series at MIT Press. The already

published books include Software Studies: A Lexicon edited by Fuller (2008),

Expressive Processing: Digital Fictions, Computer Games, and Software

Studies by Wardrip-Fruin (2009), Programmed Visions: Software and

Memory by Wendy Hui Kyong Chun (2011), and Code/Space: Software and

Everyday Life by Rob Kitchin and Martin Dodge (2011). (Email any of us if

you want to submit your own book proposal in software studies.) And in

2011, Fuller together with a number of UK researchers established

Computational Culture, open-access peer-reviewed journal which will provide

a platform for more publications and discussions.

3 http://pzwart.wdka.hro.nl/mdr/Seminars2/softstudworkshop, accessed
January 21, 2008.

 Manovich: Cultural Software. 2011.

In the Foreword to Software book series, Fuller writes:

Software is deeply woven into contemporary life—economically, culturally,
creatively, politically—in manners both obvious and nearly invisible. Yet
while much is written about how software is used, and the activities that it
supports and shapes, thinking about software itself has remained largely
technical for much of its history. Increasingly, however, artists, scientists,
engineers, hackers, designers, and scholars in the humanities and social
sciences are finding that for the questions they face, and the things they
need to build, an expanded understanding of software is necessary. For
such understanding they can call upon a strand of texts in the history of
computing and new media, they can take part in the rich implicit culture of
software, and they also can take part in the development of an emerging,
fundamentally transdisciplinary, computational literacy. These provide the
foundation for Software Studies.4

Indeed, a number of earlier works by the leading media theorists of our

times - Katherine Hayles, Friedrich A. Kittler, Lawrence Lessig, Manual

Castells, Alex Galloway, and others - can also be retroactively identified as

belonging to "software studies.”5 Therefore, I strongly believe that this

paradigm has already existed for a number of years but it has not been

explicitly named until a few years ago. (In other words, the state of

"software studies" is similar to where "new media" was in the middle of the

1990s.)

In his introduction to 2006 Rotterdam workshop Fuller writes that “software

can be seen as an object of study and an area of practice for art and design

theory and the humanities, for cultural studies and science and technology

studies and for an emerging reflexive strand of computer science.” Given

4 Software Studies series introduction.
http://mitpress.mit.edu/catalog/browse/browse.asp?btype=6&serid=179,
accesed July 14, 2011.
5 See Michael Truscello. Behind the Blip: Essays on the Culture of Software
(review) Cultural Critique 63, Spring 2006, pp. 182-187.

 Manovich: Cultural Software. 2011.

that a new academic discpline can be defined either through a unique object

of study, a new research method, or a combination of the two, how shall we

think of software studies? Fuller’s statement implies that “software” is a new

object of study which should be put on the agenta of existing disciplines and

which can be studied using aleady exising methods – for instance, Latour’s

object-network theory, social semiotics, or media archeology.

I think there are good reasons for supporting this perspective. I think of

software as a layer that permeates all areas of contemporary societies.

Therefore, if we want to understand contemporary techniques of control,

communication, representation, simulation, analysis, decision-making,

memory, vision, writing, and interaction, our analysis can't be complete until

we consider this software layer. Which means that all disciplines which deal

with contemporary society and culture – architecture, design, art criticism,

sociology, political science, humanities, science and technology studies, and

so on – need to account for the role of software and its effects in whatever

subjects they investigate.

At the same time, the existing work in software studies already demonstates

that if we are to focus on software itself, we need new methodologies. That

is, it helps to practice what one writes about. It is not accidental that the

intellectuals who have most systematicaly written about software’s roles in

society and culture so far all either have programmed themselves or have

been systematically involved in cultural projects which centrally involve

writing of new software: Katherine Hales, Wendy Hui Kyong, Mathew Fuller,

Alexander Galloway, Ian Bogust, Geet Lovink, Paul D. Miller, Peter

Lunenfeld, Katie Salen, Eric Zimmerman, Matthew Kirschenbaum, William J.

Mitchell, Bruce Sterling In contrast, the scholars without this technical

experience such as Jay Bolter, Siegfried Zielinski, Manual Castells, and Bruno

 Manovich: Cultural Software. 2011.

Latour have not included discusssions of software in their overwise

theoretically precise and highly influential accounts of modern media and

technology.

In the present decade, the number of students in media art, design,

architecture, and humanities who use programming or scripting in their work

has grown substantially – at least in comparison to 1999 when I first

mentioned “software studies” in The Language of New Media. Outside of

culture and academic industries, many more people today are writing

software as well. To a significant extent, this is the result of new

programming and scripting languages such as Processing, PHP, and

ActionScript. Another important factor is the publication of APIs by all major

Web 2.0 companies in the middle of 2000s. (API, or Application

Programming Interface, is a code which allows other computer programs to

access services offered by an application. For instance, people can use

Google Maps API to embed full Google Maps on their own web sites.) These

programming and scripting languages and APIs did not necessary made

programming iself any easier. Rather, they made it much more efficient. For

instance, when a young designer can create an interesting design with only

couple of dozens of code written in Processing versus writing a really long

Java program, s/he is much more likely to take up programming. Similarly,

if only a few lines in Javascript allows you to intergrate all the functionality

offered by Google Maps into your site, this is a great motivation for

beginning to work with Javascript.

In his 2006 article which reviewed other examples of new technologies which

allow people with very little or no programming experience to create new

custom software (such as Ning and Coghead), Martin LaMonica wrote about

 Manovich: Cultural Software. 2011.

a future possibility of “a long tail for apps.”6 A few years later, this is exacly

what happened. In june 2011, 450,000 aps were available on Apple App

Store, and 225,000 aps on Android Market7.

Inspite of these very impressive numbers, the gap between people who can

program and who can’t remains. Clearly, today the consumer technologies

for capturing and editing media are much easier to use than even most high

level programming and scipting languages. But it does not necessary have to

stay this way. Think, for instance, of what it took to set up a photo studio

and take photographs in 1850s versus simply pressing a single button on a

digital camera or a mobile phone in 2000s. Clearly, we are very far from

such simplicity in programming. But I don’t see any logical reasons why

programming can’t one day become as easy.

For now, the number of people who can script and program keeps

increasing. Although we are far from a true “long tail” for software, software

development is gradualy getting more democratised. It is, therefore, the

right moment, to start thinking theoretically about how software is shaping

our culture, and how it is shaped by culture in its turn. The time for

“software studies” has arrived.

6 Martin LaMonica, “The do-it-yourself Web emerges,” CNET News, July 31,
2006 < http://www.news.com/The-do-it-yourself-Web-emerges/2100-
1032_3-6099965.html>, accessed March 23, 2008.
7 For the current stats on the number of iOS apps and number of times they
were downloaded, see
http://en.wikipedia.org/wiki/App_Store_(iOS)#Milestones, accessed July 2,
2011,

 Manovich: Cultural Software. 2011.

What is “Cultural Software”?

German media and literary theorist Friedrich Kittler wrote that the students

today should know at least two software languages; only “then they'll be

able to say something about what 'culture' is at the moment.”8 Kittler

himself programms in an assembler language which probably determined his

distrust of Graphical User Interfaces and modern software which uses these

interfaces. In a classical modernist move, Kittler argued that we need to

focus on the “essence” of computer - which for Kittler meant mathematical

and logical foundations of modern computer and its early history

characterised by tools such as assembler languages.

While Software Studies (as already defined by growing number of books and

articles) is concerned with all types of software, my own particular interests

are with cultural software. While this term was used earlier metaphorically

(for instance, see J.M. Balkin, Cultural Software: A Theory of Ideology,

2003), I am going to use it literally to refer to certain types of software

which support actions we normally associate with “culture.” These cultural

actions enabled by software can be divided into a number of categories:

8 Friedrich Kittler, 'Technologies of Writing/Rewriting Technology'
<http://www.emory.edu/ALTJNL/Articles/kittler/kit1.htm>, p. 12; quoted in
Michael Truscello, “The Birth of Software Studies: Lev Manovich and Digital
Materialism,” Film-Philosophy, Vol. 7 No. 55, December 2003.
http://www.film-philosophy.com/vol7-2003/n55truscello.html, acccessed
January 21, 2008.

 Manovich: Cultural Software. 2011.

1) creating, sharing and accessing cultural artifacts which contain

representations, ideas, beliefs, and aesthetic values (for instance,

editing a music video or designing a package for a product);

2) engaging in interactive cultural experiences (for instance, playing a

computer game);

3) creating and sharing information and knowledge (for instance,

writing an article for Wikipedia, adding places in Google Earth);

4) communicating with other people (email, instant message, voice over

IP, online text and video chat, social networking features such as wall

postings, pokes, events, photo tags, notes, places, etc.9);

5) participating in online information ecology (for instance, adding to

information available to Google web search software for generating future

search results everytime you use this service, clicking "+1" button on

Google+ or 'Like' button on Facebook.)

6) developing software tools and services which support all these

activities (for instance, programming a library for Processing which enables

sending and receiving data over internet10).

Technically, this software may implemented in a variety of ways. Popular

implementations (refered in computer industry as “architectures”) include

stand-alone applications which run on user computing device, distributed

applications (a client running on user device commnicates with softare on

9 http://en.wikipedia.org/wiki/Facebook_features, accessed July 14, 2011.
10 http://www.processing.org/reference/libraries/, accessed July 7, 2011.

 Manovich: Cultural Software. 2011.

the server11), and peer-to-peer networks (each computer becomes both a

client and a server12). If all this sounds completely unfamiliar, don’t worry:

all you need to understand is that “cultural software” as I will use this term

covers a wide range of products and servers (as opposed to only refering to

Word, Photoshop, and Firefox). This, all these qualify as cultural software:

professional film and video editing and visual effects applications which need

special computer hardward beoynd what a typical laptop offers (i.e., Smoke,

Flame and Lustre from Autodesk13), consumer app iMovie, social media and

social network services such as Facebook and Vimeo. In the latter case, the

software includes multiple programs and databases running on company’s

servers (for instance, Google is thought to have over one million servers

around the world14) and a website and/or apps used by people to send

emals, chat, post updates, upload video, leave comments, etc.

Lets go through some of the software types which I listed above in a little

more detail.

The first category is application software for accessing, creating, distributing,

and managing (or” publishing”, “sharing”, and “remixing”) media content.

The examples are Microsoft Word, Powerpoint, Photoshop, Illustrator, After

Effects, Firefox, Internet Explorer, and Blogger. This category is in the center

of this book. Therefore, to be able to refer to it category via a single simple

term, I will call it media software.

11 http://en.wikipedia.org/wiki/Client-server, accessed July 7, 2011.
12 http://en.wikipedia.org/wiki/Client-server#Comparison_to_peer-to-
peer_architecture, accessed July 7, 2011.
13 http://usa.autodesk.com/flame/, accessed July 7, 2011.
14 "Pandia Search Engine News – Google: one million servers and counting".
Pandia Search Engine News. July 2, 2007. Retrieved February 14, 2010.

 Manovich: Cultural Software. 2011.

I will take for granted that since we all use application programs, or “apps,”

we all have a basic understanding of this term.15 Similarly, I also assume

that we do understand what “content” refers in digital culture, but just to be

sure, here are couple of ways to define it. We can simply list various types of

media which are created, shared, and accessed with media software and the

tools provided by social media and sites: texts, images, digital video,

animations, 3D objects and scenes, maps, as well as various combinations

of these and other media. Alternatively, we can define “content” by listing

genres, for instance web pages, tweets, Facebook updates, casual games,

multiplayer online games, user-generated video, search engine results,

URLs, map locations, shared bookmarks, etc.

Digital culture tends to modularize content, i.e., to both enable and reward

users to creating, distribute, and re-use pieces of “content” on multiple

scales – looping animations to be used as backgrounds for videos, 3D

objects to be used in creating complex 3D animations, pieces of code to be

used in web stes and blogs, etc16. (This modularity parallels the fundamental

principle of modern software engineering to desigxn comple programs from

small reusable parts called functions or procedures.) All such parts also

quality as “content.”

Between late 1970s and middle of 2000s, application programs for media

editing were designed to run on a user’s computer (micicomputers, PCs,

scientific workstation, and later laptops). In the next five years, companies

gradually created more and more capable versions of these programs

running in the “cloud.” Some of these programs are available via their own

15 For a possible taxonomy of types of application software, see Application
software (n.d.). In Wikipedia.
http://en.wikipedia.org/wiki/Application_software, accessed July 2, 2011.
16 For an extended discussion of modularity in new media, see The Language
of New Media (MIT Press, 2001).

 Manovich: Cultural Software. 2011.

web sites (Google Docs, Picnik photo editor), while others are intergrated

with media hosting or social media sevices (i.e. Photobucket image and

video editor). Many applications are implemented as clients which run on

mobile phones (i.e, Maps on iPhone), tablets, and TVs televison platforms

and communicate with the servers and web sites. The examples of such

platforms are Apple’s iOS17, Google’s Android18, and LG’s Smart TV App

platform19.

The development of mobile software platforms led to increasing importance

of certain media application type (and corresponding cultural activities) such

as media uploaders. To put this differently, managing media content (for

example, organizing photos in Picassa) and also “meta-managing” (i.e.

managing the systems which manage it such as organizing a blogroll) have

become as central to person’s cultural life as creating this content.

Cultural software also includes tools and services which are specifically

designed for (or at least include comprehensive tools for) communication

and sharing of information and knowledge, i.e. “social software.20 The

examples incllude search engines, web browsers, blog editors, email clients

and services, instant messaging clients, wikis, social bookmarking, social

networks, virtual worlds, Massively Multiplayer Online Games and prediction

markets. The familiar names include growing family of Google products

(Google Web search, Gmail, Google Maps, etc.), Skype, MediaWiki, and

World of Warcraft.

17 For the current stats on iOS apps, see
http://en.wikipedia.org/wiki/App_Store_(iOS)#Milestones, accessed July 7,
2011.
18 http://en.wikipedia.org/wiki/Android_Market, accessed July 7, 2011.
19 http://www.wired.com/gadgetlab/2011/01/lg-smart-tv/, accessed July 7,
2011.
20 See http://en.wikipedia.org/wiki/Social_software, accessed July 2, 2011

 Manovich: Cultural Software. 2011.

Of course, people do not share everything online – at least, not yet.

Therefore, we should also include software tools for personal information

management such as project managers, database applications, and simple

text editors or note taking apps which are included with every computer

device being sold.

These categories are always changing gradually over time. For instance,

during 2000s the boundary between “personal information” and “public

information” has being reconfigured as people started to routinely place their

media on media sharing sites, and also communicate with other on social

networks.

In fact, the whole reason behind existence of social media and social

networking services and hosting web sites is to erase this boundary as much

as possible. By encouraging users to conduct larger parts of their social and

cultural lives on their sites, these services can both sell more ads to more

people, and also insure the continuos growth of their user base (with more

of your friends using a particular service and offering more information,

media and discussions there, you are more likely to also join this service.)

As many of these services begun to offer more and more advanced media

editing and information mangememt tools along with their original media

hosting and communication and social networking functons, they did

manage to largely erase another set of boudaries (from the PC era):

between application programs, operating system, and data. Facebook, in

particular, was very agrresive as positioning itself as a complete “social

platform” which can replace varius stand alone communication programs and

services.

 Manovich: Cultural Software. 2011.

Until the rize of social media and proliferation of mobile media platforms, it

was possible to study media production, dissemination and consumption as

separate processes. Similarly, we could usually separate between production

tools, distributon techologies, and media access devices and platforms – for

example, TV studio, cameras, lighting, and editing machines (production),

transmission systems, and television sets (access). Social media and cloud

computing in general erase these boundaries in many cases (especially user-

generated content) and at the same time introduce new ones (client/server,

open access/commercial). The challenge of software studies is to be able to

use terms such as “content” and “software application” (which I myself

envoked earlier) while always keeping in mind that the current social media

/ cloud computing paradigms are systematically reconfure what these terms

may refer to.

Finally, I need to add one last set of distinctions to this map of cultural

software. I am interested in how software appears to users – i.e. what

functions it offers to create, share, reuse, communicate, manage and

organize, media interfaces used to present these functions, and assumptions

and models about a user, her needs, and society encoded in these functions

and their presentation.

Functions are embedded in app commands, menu, and the choices they offer

– in other words, what you can do with a given app, and how you can do it.

However, I do want to make a point about media forms of software. Many

people still think that contemporary computer devices use Graphical User

Interface (GUI). In reality, original GUI of the early 180s (icons, folders,

menus) have been gradually extended to include other media and senses –

sounds, animations, and vibration feedback which may accompaning user

 Manovich: Cultural Software. 2011.

interactions on a mobile device, voice input, multi-touch gesture interfaces,

etc. So this is why the term “media interface” is more accurate description of

how interfaces work today.

Why a Comprehensive History of Cultural Software Does
Not Exist

We live in a software culture - that is, a culture where the production,

distribution, and reception of most content is mediated by software. And yet,

most creative professionals do not know anything about the intellectual

history of software they use daily - be it Flash, Photoshop, GIMP, Final Cut,

After Effects, Blender, Flame, Maya, MAX, or Dreamweaver.

Where does contemporary cultural software came from? How did its

metaphors and techniques were arrived yet? And why was it developed in

the first place? Certain software platforms, services and tools have been

extensively covered in media, so their history is relatively well-known (think

of Facebook, Google, and Apple). But this is the tiny part of the tip of the

iceburg. Media creating and edting software history is pretty much unknown.

Despite the common statements that digital revolution is at least as

important as the invention of a printing press, we are largely ignorant of how

the key part of this revolution - i.e., media software - was invented. Then

you think about this, it is unbelieavable. People in the business of culture

knows about Guttenberg (printing press), Brunelleschi (perspective), The

Lumiere Brothers, Griffith and Eisenstein (cinema), Le Corbusier (modern

architecture), Isadora Duncan (modern dance), and Saul Bass (motion

graphics). (If you happen not to know one of these names, I am sure that

you have other cultural friends who do). And yet, even today, relatively few

people heard about J.C. Liicklider, Ivan Sutherland, Ted Nelson, Douglas

 Manovich: Cultural Software. 2011.

Engelbart, Alan Kay, and their colloborators who, between approximately

1960 and 1978, have gradually turned computer into a cultural machine it is

today.

Remarkably, history of cultural software as its own category does not yet

exist. What we have are a number of largely biographical books about some

of the key individual figures and research labs such as Xerox PARC or Media

Lab - but no comprehensive synthesis which would trace the geneological

tree of media tools.21 And we also don’t have any detailed studies which

would relate the history of cultural software to history of media, media

theory, or history of visual culture.

Modern art institutions - museums such as MOMA and Tate, art book

publishers such as Phaidon and Rizzoli, etc. – promote the history of modern

art. Hollywood is similarly proud of its own history – the stars, the directors,

the cinematographers, and the classical films. So how can we understand

the neglect of the history of cultural computing by our cultural institutions

and computer industry itself? Why, for instance, Silicon Valley does not a

museum for cultural software? (The Computer History museum in Mountain

View, California has an extensive permanent exhibition which is focused on

hardware, operating systems and programming languages – but not on the

history of cultural software22).

I believe that the major reason has to do with economics. Originally

misunderstood and ridiculed, modern art has eventualy became a legitimate

21 The two best books on the pioneeres of cultural computing, in my view, are
Howard Rheingold, Tools for Thought: The History and Future of Mind-
Expanding Technology (The MIT Press; 2 Rev Sub edition, 2000), and M.
Mitchell Waldrop, The Dream Machine: J.C.R. Licklider and the Revolution
That Made Computing Personal (Viking Adult, 2001).
22 For the museum presentation on the web, see
http://www.computerhistory.org/about/, accessed March 24, 2008.

 Manovich: Cultural Software. 2011.

investment category – in fact, by middle of 2000s, the paintings of a number

of twentiteh century artists were selling for more than the most famous

classical artists. Similarly, Hollywood continues to rip profits from old movies

as these continue to be reissued in new formats. What about IT industry? It

does not derive any profits from the old software – and therefore, it does

nothing to promote its history. Of course, contemporary versions of

Microsoft Word, Adobe Photoshop, Autodesk Autocad, and many other

popular cultural applications build up on the first versions which often date

from the 1980s, and the companies continue to benefit from the patents

they filed for new technlogies used in these original versions – but, in

contast to the video games from the 1980s, these early software versions

are not treated as a separate products which can be re-issued today. (In

principle, I can imagine software industry creating a whole new market for

old software versions or applications which at some point were quite

important but no longer exist today – for instance, Aldus Pagemaker. In fact,

given that consumer culture systematically exploits nostalgia of adults for

the cultural experiences of their teenage years and youth by making these

experiences into new products, it is actually surpising that early software

versions were not turned into a market yet. If I used daily MacWrite and

MacPaint in the middle of the 1980s, or Photoshop 1.0 and 2.0 in 1990-

1993, I think these experiences were as much part of my “cultural genelogy”

as the movies and art I saw at the same time. Although I am not necessary

advocating creating yet another category of commercial products, if early

software was widely available in simulation, it would catalyze cultural

interest in software similar to the way in which wide availability of early

computer games fuels the field of video game studies.)

Since most theorists so far have not considered cultural software as a

subject of its own, distinct from “social media,” “social networks,” “new

 Manovich: Cultural Software. 2011.

media,” media art,” “internet,” “interactivity,” and “cyberculture,” we lack

not only a conceptual history of media editing software but also systematic

investigations of the roles of software in media production. For instance, how

did the use of the popular animation and compositing application After

Effects has reshaped the language of moving images? How did the adoption

of Alias, Maya and other 3D packages by arhitectural students and young

architects in the 1990s, and the tools available in these programs in different

periods have similarly influenced the langauge of architecture? What about

the co-evolution of Web design tools and the aesthetics of web sites – from

the bare-bones HTML in 1994 to visually rich Flash-driven sites five years

later? You will find frequent mentions and short discussions of these and

similar questions in articles and conference talks, but as far as I know, there

have been no book-length study about any of these subjects. Often, books

on architecture, motion graphics, graphic design and other design fields will

briefly discuss the importance of software tools in facilitating new

possibilities and opportunities, but these discussions usually are not further

developed.

How to “Understand Media”?

In Introduction to his Exressive Processing published in The MIT Press

Software Studies series, Noah Wardrip-Fruin summarizes this sitiation:

“Regardless of perspective, writings on digital media almost all ignore

something crucial: the actual processes that make digital media work, the

computational machines that make digital media possible.”23 Wardrip-Fruin

and others already started filling this gap – especially in the areas of game

platforms and design, and electronic literature.

23 Noah Wardrip-Fruin. Expressive Processing: Digital Fictions, Computer
Games, and Software Studies. The MIT Press, 2011.

 Manovich: Cultural Software. 2011.

In this respect, the related fields of code studies and platform studies being

developed by Mark Marino24, Nick Montfort and Ian Bogost are playing a very

important role. According to Marino (and I completely agree), these three

fields compliment each other in this way: “Critical code studies is an

emerging field related to software studies and platform studies, but it’s more

closely attuned to the code itself of a program rather than the program’s

interface and usability (as in software studies) or its underlying hardware (as

in platform studies).”25

Despite significant progress in the last few years, much work will remains. In

particular, the processes of media design using application software have not

been analyzed in detail. This is exactly what my book aims to address.

The book has three related goals.

The first goal is to better understand the media objects which we

experience and engage with hundreds of times every day: animated TV

titles, TV and web animated ads, graphic designs, illustrations, web graphics

and banners, and so on. Very often, these artifacts are parts of interactive

media experiences – navigating the web, playing a video games The

examples of “engagment” are sharing, editing, remixing, and commenting.

(So-called “social media block” buttons which are standard today on lots of

web sites exemplify these forms of engagments.)

24 Mark C. Marino, “Critical Code Studies.” Electronic Book Review, December
12, 2006.
http://www.electronicbookreview.com/thread/electropoetics/codology,
accessed July 14, 2011.
25 http://chnm2011.thatcamp.org/05/24/session-proposal-critical-code-
studies/, accessed July 14, 2011.

 Manovich: Cultural Software. 2011.

This media is experienced, created, edited, remixed, organized and shared

with software. The software includes stand-alone professional media design

applications such as Photoshop, Dreamwether, After Effects, Aperture,

Illustrator, Maya, and Word; consumer-level apps such as iPhoto, iMovie, or

Picassa; and social media tools (editing / sharing / commenting) provided by

social media sites such as Facebook, Vimeo, and Photobucket. Therefore, my

second goal is to understand media software – its geneology (where does

it come from), its anatomy (the key features shared by all media viewing

and editing software), and its effects in the world. Specifically, I will be

concerned with two kinds of effects: 1) How media design software shapes

the media being created, making some design choices seem natural and

easy to execute, while hiding other design possibilities; 2) How media

viewing / managing / remixing software shapes our experience of media and

the actions we perform on it.

My third goal is to undestand what “media” is today conceptually. Are the

concepts of media developed to account for industrial era technoogies, from

photography to video still work in relation to media which is designed and

experienced with software? Do they need to be updated, or completely

replaced by new more appopriate concepts? For example: do we still have

different media or did they merged into a single new meta-medium? Are

there some structural features which motion graphics, graphic designs, web

sites, product designs, buildings, and video games all share since they are

all designed with software?

In short: does “media” still exist?

